Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John R. Tyson is active.

Publication


Featured researches published by John R. Tyson.


F1000Research | 2015

MinION Analysis and Reference Consortium: Phase 1 data release and analysis

Camilla L. C. Ip; Matthew Loose; John R. Tyson; Mariateresa de Cesare; Bonnie L. Brown; Miten Jain; Richard M. Leggett; David Eccles; Vadim Zalunin; John M. Urban; Paolo Piazza; Rory Bowden; Benedict Paten; Solomon Mwaigwisya; Elizabeth M. Batty; Jared T. Simpson; Terrance P. Snutch; Ewan Birney; David Buck; Sara Goodwin; Hans J. Jansen; Justin O'Grady; Hugh E. Olsen; MinION Analysis

The advent of a miniaturized DNA sequencing device with a high-throughput contextual sequencing capability embodies the next generation of large scale sequencing tools. The MinION™ Access Programme (MAP) was initiated by Oxford Nanopore Technologies™ in April 2014, giving public access to their USB-attached miniature sequencing device. The MinION Analysis and Reference Consortium (MARC) was formed by a subset of MAP participants, with the aim of evaluating and providing standard protocols and reference data to the community. Envisaged as a multi-phased project, this study provides the global community with the Phase 1 data from MARC, where the reproducibility of the performance of the MinION was evaluated at multiple sites. Five laboratories on two continents generated data using a control strain of Escherichia coli K-12, preparing and sequencing samples according to a revised ONT protocol. Here, we provide the details of the protocol used, along with a preliminary analysis of the characteristics of typical runs including the consistency, rate, volume and quality of data produced. Further analysis of the Phase 1 data presented here, and additional experiments in Phase 2 of E. coli from MARC are already underway to identify ways to improve and enhance MinION performance.


Nature Biotechnology | 2018

Nanopore sequencing and assembly of a human genome with ultra-long reads

Miten Jain; Sergey Koren; Karen H. Miga; Josh Quick; Arthur C Rand; Thomas A Sasani; John R. Tyson; Andrew D. Beggs; Alexander Dilthey; Ian T Fiddes; Sunir Malla; Hannah Marriott; Tom Nieto; Justin O'Grady; Hugh E. Olsen; Brent S. Pedersen; Arang Rhie; Hollian Richardson; Aaron R. Quinlan; Terrance P. Snutch; Louise Tee; Benedict Paten; Adam M. Phillippy; Jared T. Simpson; Nicholas J. Loman; Matthew Loose

We report the sequencing and assembly of a reference genome for the human GM12878 Utah/Ceph cell line using the MinION (Oxford Nanopore Technologies) nanopore sequencer. 91.2 Gb of sequence data, representing ∼30× theoretical coverage, were produced. Reference-based alignment enabled detection of large structural variants and epigenetic modifications. De novo assembly of nanopore reads alone yielded a contiguous assembly (NG50 ∼3 Mb). We developed a protocol to generate ultra-long reads (N50 > 100 kb, read lengths up to 882 kb). Incorporating an additional 5× coverage of these ultra-long reads more than doubled the assembly contiguity (NG50 ∼6.4 Mb). The final assembled genome was 2,867 million bases in size, covering 85.8% of the reference. Assembly accuracy, after incorporating complementary short-read sequencing data, exceeded 99.8%. Ultra-long reads enabled assembly and phasing of the 4-Mb major histocompatibility complex (MHC) locus in its entirety, measurement of telomere repeat length, and closure of gaps in the reference human genome assembly GRCh38.


Cell | 2015

The Cellular Mechanisms of Neuronal Swelling Underlying Cytotoxic Edema

Ravi L. Rungta; Hyun B. Choi; John R. Tyson; Aqsa Malik; Lasse Dissing-Olesen; Paulo J.C. Lin; Stuart M. Cain; Pieter R. Cullis; Terrance P. Snutch; Brian A. MacVicar

Cytotoxic brain edema triggered by neuronal swelling is the chief cause of mortality following brain trauma and cerebral infarct. Using fluorescence lifetime imaging to analyze contributions of intracellular ionic changes in brain slices, we find that intense Na(+) entry triggers a secondary increase in intracellular Cl(-) that is required for neuronal swelling and death. Pharmacological and siRNA-mediated knockdown screening identified the ion exchanger SLC26A11 unexpectedly acting as a voltage-gated Cl(-) channel that is activated upon neuronal depolarization to membrane potentials lower than -20 mV. Blockade of SLC26A11 activity attenuates both neuronal swelling and cell death. Therefore cytotoxic neuronal edema occurs when sufficient Na(+) influx and depolarization is followed by Cl(-) entry via SLC26A11. The resultant NaCl accumulation causes subsequent neuronal swelling leading to neuronal death. These findings shed light on unique elements of volume control in excitable cells and lay the ground for the development of specific treatments for brain edema.


Channels | 2010

Splice-variant changes of the Ca(V)3.2 T-type calcium channel mediate voltage-dependent facilitation and associate with cardiac hypertrophy and development.

Laurence S. David; Esperanza Garcia; Stuart M. Cain; Elana Thau; John R. Tyson; Terrance P. Snutch

Low voltage-activated T-type calcium (Ca) channels contribute to the normal development of the heart and are also implicated in pathophysiological states such as cardiac hypertrophy. Functionally distinct T-type Ca channel isoforms can be generated by alternative splicing from each of three different T-type genes (CaV3.1, CaV3.2,CaV3 .3), although it remains to be described whether specific splice variants are associated with developmental states and pathological conditions. We aimed to identify and functionally characterize CaV3.2 T-type Ca channel alternatively spliced variants from newborn animals and to compare with adult normotensive and spontaneously hypertensive rats (SHR). DNA sequence analysis of full-length CaV3.2 cDNA generated from newborn heart tissue identified ten major regions of alternative splicing, the more common variants of which were analyzed by quantitative real-time PCR (qRT-PCR) and also subject to functional examination by whole-cell patch clamp. The main findings are that: (1) cardiac CaV3.2 T-type Ca channels are subject to considerable alternative splicing, (2) there is preferential expression ofCaV3 .2(-25) splice variant channels in newborn rat heart with a developmental shift in adult heart that results in approximately equal levels of expression of both (+25) and (-25) exon variants, (3) in the adult stage of hypertensive rats there is a both an increase in overallCaV3 .2 expression and a shift towards expression of CaV3.2(+25) containing channels as the predominant form, and (4) alternative splicing confers a variant-specific voltage-dependent facilitation ofCaV3 .2 channels. We conclude that CaV3.2 alternative splicing generates significant T-type Ca channel structural and functional diversity with potential implications relevant to cardiac developmental and pathophysiological states.


F1000Research | 2017

MinION Analysis and Reference Consortium: Phase 2 data release and analysis of R9.0 chemistry

Miten Jain; John R. Tyson; Matthew Loose; Camilla L. C. Ip; David Eccles; Justin O'Grady; Sunir Malla; Richard M. Leggett; Ola Wallerman; Hans J. Jansen; Vadim Zalunin; Ewan Birney; Bonnie L. Brown; Terrance P. Snutch; Hugh E. Olsen

Background: Long-read sequencing is rapidly evolving and reshaping the suite of opportunities for genomic analysis. For the MinION in particular, as both the platform and chemistry develop, the user community requires reference data to set performance expectations and maximally exploit third-generation sequencing. We performed an analysis of MinION data derived from whole genome sequencing of Escherichia coli K-12 using the R9.0 chemistry, comparing the results with the older R7.3 chemistry. Methods: We computed the error-rate estimates for insertions, deletions, and mismatches in MinION reads. Results: Run-time characteristics of the flow cell and run scripts for R9.0 were similar to those observed for R7.3 chemistry, but with an 8-fold increase in bases per second (from 30 bps in R7.3 and SQK-MAP005 library preparation, to 250 bps in R9.0) processed by individual nanopores, and less drop-off in yield over time. The 2-dimensional (“2D”) N50 read length was unchanged from the prior chemistry. Using the proportion of alignable reads as a measure of base-call accuracy, 99.9% of “pass” template reads from 1-dimensional (“1D”) experiments were mappable and ~97% from 2D experiments. The median identity of reads was ~89% for 1D and ~94% for 2D experiments. The total error rate (miscall + insertion + deletion ) decreased for 2D “pass” reads from 9.1% in R7.3 to 7.5% in R9.0 and for template “pass” reads from 26.7% in R7.3 to 14.5% in R9.0. Conclusions: These Phase 2 MinION experiments serve as a baseline by providing estimates for read quality, throughput, and mappability. The datasets further enable the development of bioinformatic tools tailored to the new R9.0 chemistry and the design of novel biological applications for this technology. Abbreviations: K: thousand, Kb: kilobase (one thousand base pairs), M: million, Mb: megabase (one million base pairs), Gb: gigabase (one billion base pairs).


bioRxiv | 2017

Whole genome sequencing and assembly of a Caenorhabditis elegans genome with complex genomic rearrangements using the MinION sequencing device

John R. Tyson; Nigel J. O'Neil; Miten Jain; Hugh E. Olsen; Philip Hieter; Terrance P. Snutch

Advances in 3rd generation sequencing have opened new possibilities for ‘benchtop’ whole genome sequencing. The MinION is a portable device that uses nanopore technology and can sequence long DNA molecules. MinION long reads are well suited for sequencing and de novo assembly of complex genomes with large repetitive elements. Long reads also facilitate the identification of complex genomic rearrangements such as those observed in tumor genomes. To assess the feasibility of the de novo assembly of large complex genomes using both MinION and Illumina platforms, we sequenced the genome of a Caenorhabditis elegans strain that contains a complex acetaldehyde-induced rearrangement and a biolistic bombardment-mediated insertion of a GFP containing plasmid. Using ∼5.8 gigabases of MinION sequence data, we were able to assemble a C. elegans genome containing 145 contigs (N50 contig length = 1.22 Mb) that covered >99% of the 100,286,401 bp reference genome. In contrast, using ∼8.04 gigabases of Illumina sequence data, we were able to assemble a C. elegans genome in 38,645 contigs (N50 contig length = ∼26 kb) containing 117 Mb. From the MinION genome assembly we identified the complex structures of both the acetaldehyde-induced mutation and the biolistic-mediated insertion. To date, this is the largest genome to be assembled exclusively from MinION data and is the first demonstration that the long reads of MinION sequencing can be used for whole genome assembly of large (100 Mb) genomes and the elucidation of complex genomic rearrangements.


Pflügers Archiv: European Journal of Physiology | 2015

Thalamocortical neurons display suppressed burst-firing due to an enhanced Ih current in a genetic model of absence epilepsy

Stuart M. Cain; John R. Tyson; Karen Jones; Terrance P. Snutch

Burst-firing in distinct subsets of thalamic relay (TR) neurons is thought to be a key requirement for the propagation of absence seizures. However, in the well-regarded Genetic Absence Epilepsy Rats from Strasbourg (GAERS) model as yet there has been no link described between burst-firing in TR neurons and spike-and-wave discharges (SWDs). GAERS ventrobasal (VB) neurons are a specific subset of TR neurons that do not normally display burst-firing during absence seizures in the GAERS model, and here, we assessed the underlying relationship of VB burst-firing with Ih and T-type calcium currents between GAERS and non-epileptic control (NEC) animals. In response to 200-ms hyperpolarizing current injections, adult epileptic but not pre-epileptic GAERS VB neurons displayed suppressed burst-firing compared to NEC. In response to longer duration 1,000-ms hyperpolarizing current injections, both pre-epileptic and epileptic GAERS VB neurons required significantly more hyperpolarizing current injection to burst-fire than those of NEC animals. The current density of the Hyperpolarization and Cyclic Nucleotide-activated (HCN) current (Ih) was found to be increased in GAERS VB neurons, and the blockade of Ih relieved the suppressed burst-firing in both pre-epileptic P15–P20 and adult animals. In support, levels of HCN-1 and HCN-3 isoform channel proteins were increased in GAERS VB thalamic tissue. T-type calcium channel whole-cell currents were found to be decreased in P7–P9 GAERS VB neurons, and also noted was a decrease in CaV3.1 mRNA and protein levels in adults. Z944, a potent T-type calcium channel blocker with anti-epileptic properties, completely abolished hyperpolarization-induced VB burst-firing in both NEC and GAERS VB neurons.


Proceedings of the National Academy of Sciences of the United States of America | 2017

In vivo imaging reveals that pregabalin inhibits cortical spreading depression and propagation to subcortical brain structures

Stuart M. Cain; Barry Bohnet; Jeffrey M. LeDue; Andrew Yung; Esperanza Garcia; John R. Tyson; Sascha R. A. Alles; Huili Han; Arn M. J. M. van den Maagdenberg; Piotr Kozlowski; Brian A. MacVicar; Terrance P. Snutch

Significance Spreading depression is proposed to underlie migraine with aura, a type of debilitating headache for which few pharmacological treatments are available. The pain drug pregabalin has demonstrated initial promising results for the treatment of migraine in the clinic. Utilizing animal models of congenital migraine and live brain imaging, we describe the cortical and subcortical migration of the spreading depression wave. Further, pregabalin is shown to be effective at suppressing spreading depression initiation, wave speed, and subcortical propagation, and also to affect nerve cell signalling directly. Overall, the study supports the therapeutic potential of pregabalin in both noncongenital migraineurs and patients with mild congenital migraine. Migraine is characterized by severe headaches that can be preceded by an aura likely caused by cortical spreading depression (SD). The antiepileptic pregabalin (Lyrica) shows clinical promise for migraine therapy, although its efficacy and mechanism of action are unclear. As detected by diffusion-weighted MRI (DW-MRI) in wild-type (WT) mice, the acute systemic administration of pregabalin increased the threshold for SD initiation in vivo. In familial hemiplegic migraine type 1 mutant mice expressing human mutations (R192Q and S218L) in the CaV2.1 (P/Q-type) calcium channel subunit, pregabalin slowed the speed of SD propagation in vivo. Acute systemic administration of pregabalin in vivo also selectively prevented the migration of SD into subcortical striatal and hippocampal regions in the R192Q strain that exhibits a milder phenotype and gain of CaV2.1 channel function. At the cellular level, pregabalin inhibited glutamatergic synaptic transmission differentially in WT, R192Q, and S218L mice. The study describes a DW-MRI analysis method for tracking the progression of SD and provides support and a mechanism of action for pregabalin as a possible effective therapy in the treatment of migraine.


Molecular Pain | 2018

Peripheral nerve injury increases contribution of L-type calcium channels to synaptic transmission in spinal lamina II: Role of α2δ–1 subunits:

Sascha R. A. Alles; Esperanza Garcia; Sridhar Balasubramanyan; Karen Jones; John R. Tyson; Twinkle Joy; Terrance P. Snutch; Peter A. Smith

Background Following peripheral nerve chronic constriction injury, the accumulation of the α2δ–1 auxiliary subunit of voltage-gated Ca2+ channels in primary afferent terminals contributes to the onset of neuropathic pain. Overexpression of α2δ–1 in Xenopus oocytes increases the opening properties of Cav1.2 L-type channels and allows Ca2+ influx at physiological membrane potentials. We therefore posited that L-type channels play a role in neurotransmitter release in the superficial dorsal horn in the chronic constriction injury model of neuropathic pain. Results Whole-cell recording from lamina II neurons from rats, subject to sciatic chronic constriction injury, showed that the L-type Ca2+ channel blocker, nitrendipine (2 µM) reduced the frequency of spontaneous excitatory postsynaptic currents. Nitrendipine had little or no effect on spontaneous excitatory postsynaptic current frequency in neurons from sham-operated animals. To determine whether α2δ–1 is involved in upregulating function of Cav1.2 L-type channels, we tested the effect of the α2δ–1 ligand, gabapentin (100 µM) on currents recorded from HEK293F cells expressing Cav1.2/β4/α2δ–1 channels and found a significant decrease in peak amplitude with no effect on control Cav1.2/β4/α2δ–3 expressing cells. In PC-12 cells, gabapentin also significantly reduced the endogenous dihydropyridine-sensitive calcium current. In lamina II, gabapentin reduced spontaneous excitatory postsynaptic current frequency in neurons from animals subject to chronic constriction injury but not in those from sham-operated animals. Intraperitoneal injection of 5 mg/kg nitrendipine increased paw withdrawal threshold in animals subject to chronic constriction injury. Conclusion We suggest that L-type channels show an increased contribution to synaptic transmission in lamina II dorsal horn following peripheral nerve injury. The effect of gabapentin on Cav1.2 via α2δ–1 may contribute to its anti-allodynic action.


Epilepsia | 2018

CaV3.2 drives sustained burst‐firing, which is critical for absence seizure propagation in reticular thalamic neurons

Stuart M. Cain; John R. Tyson; Hyun B. Choi; Rebecca W.Y. Ko; Paulo J.C. Lin; Jeffrey M. LeDue; Kim L. Powell; Louis Philippe Bernier; Ravi L. Rungta; Yi Yang; Pieter R. Cullis; Terence J. O'Brien; Brian A. MacVicar; Terrance P. Snutch

Genetic alterations have been identified in the CACNA1H gene, encoding the CaV3.2 T‐type calcium channel in patients with absence epilepsy, yet the precise mechanisms relating to seizure propagation and spike‐wave‐discharge (SWD) pacemaking remain unknown. Neurons of the thalamic reticular nucleus (TRN) express high levels of CaV3.2 calcium channels, and we investigated whether a gain‐of‐function mutation in the Cacna1h gene in Genetic Absence Epilepsy Rats from Strasbourg (GAERS) contributes to seizure propagation and pacemaking in the TRN.

Collaboration


Dive into the John R. Tyson's collaboration.

Top Co-Authors

Avatar

Terrance P. Snutch

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Stuart M. Cain

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Hugh E. Olsen

University of California

View shared research outputs
Top Co-Authors

Avatar

Miten Jain

University of California

View shared research outputs
Top Co-Authors

Avatar

Esperanza Garcia

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Brian A. MacVicar

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Justin O'Grady

University College London

View shared research outputs
Top Co-Authors

Avatar

Matthew Loose

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Hyun B. Choi

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Jared T. Simpson

Ontario Institute for Cancer Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge