Stuart M. Cain
University of British Columbia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stuart M. Cain.
The Journal of Neuroscience | 2009
Kim L. Powell; Stuart M. Cain; Caroline Ng; Sirdesai S; David Ls; Mervyn Kyi; Garcia E; Tyson; Christopher A. Reid; Melanie Bahlo; Simon J. Foote; Terrance P. Snutch; Terence J. O'Brien
Low-voltage-activated, or T-type, calcium (Ca2+) channels are believed to play an essential role in the generation of absence seizures in the idiopathic generalized epilepsies (IGEs). We describe a homozygous, missense, single nucleotide (G to C) mutation in the Cav3.2 T-type Ca2+ channel gene (Cacna1h) in the genetic absence epilepsy rats from Strasbourg (GAERS) model of IGE. The GAERS Cav3.2 mutation (gcm) produces an arginine to proline (R1584P) substitution in exon 24 of Cacna1h, encoding a portion of the III–IV linker region in Cav3.2. gcm segregates codominantly with the number of seizures and time in seizure activity in progeny of an F1 intercross. We have further identified two major thalamic Cacna1h splice variants, either with or without exon 25. gcm introduced into the splice variants acts “epistatically,” requiring the presence of exon 25 to produce significantly faster recovery from channel inactivation and greater charge transference during high-frequency bursts. This gain-of-function mutation, the first reported in the GAERS polygenic animal model, has a novel mechanism of action, being dependent on exonic splicing for its functional consequences to be expressed.
Channels | 2010
Stuart M. Cain; Terrance P. Snutch
Low voltage-activated (LVA) T-type calcium channels play critical roles in the excitability of many cell types and are a focus of research aimed both at understanding the physiological basis of calcium channel-dependent signaling and the underlying pathophysiology associated with hyperexcitability disorders such as epilepsy. These channels play a critical role towards neuronal firing in both conducting calcium ions during action potentials and also in switching neurons between distinct modes of firing. In this review the properties of the CaV3.1, CaV3.2 and CaV3.3 T-type channel isoforms is discussed in relation to their individual contributions to action potentials during burst and tonic firing states as well their roles in switching between firing states.
Science Translational Medicine | 2012
Elizabeth Tringham; Kim L. Powell; Stuart M. Cain; Kristy Kuplast; Janette Mezeyova; Manjula Weerapura; Cyrus Eduljee; Xinpo Jiang; Paula Smith; Jerrie Lynn Morrison; Nigel C. Jones; Emma L. Braine; Gil S. Rind; Molly Fee-Maki; David Parker; Hassan Pajouhesh; Manjeet Parmar; Terence J. O'Brien; Terrance P. Snutch
Two high-affinity T-type calcium channel blockers attenuate neural activity in the thalamus and suppress seizures in a genetic model of absence epilepsy. To Soothe a Seizure Some epileptic children and adolescents experience “absence” seizures hundreds of times a day. Although apparently mild, these seizures—so named because they involve a sudden, brief absence of consciousness—can be dangerous if they occur during swimming or driving, for example. Unfortunately, the drugs available for treating such seizures are not completely effective. Tringham et al. sought to address this problem by rational drug design. Although the root cause of such seizures is not known, they are associated with abnormal, highly synchronous neuronal activity in certain brain regions. Voltage-gated ion channels, which have crucial functions in generating and propagating neuronal signals, likely play a key role. Several lines of evidence link one type of ion channel, low voltage–activated T-type calcium channels, to absence seizures. Using the structure of an N-type calcium channel blocker as a starting point, the researchers designed and screened small, focused libraries of compounds in a high-throughput assay that monitored calcium influx via a recombinant T-type channel. Two high-affinity T-type calcium channel blockers, termed Z941 and Z944, were identified; Z944 was highly selective for T-type channels and exhibited a preference for inactivated channels (the likely configuration in hyperexcited neurons). In a rat model of absence epilepsy, both compounds markedly reduced the time spent in seizures and the number of seizures per hour. In contrast to current first-line drugs for treating absence seizures, Z941 and Z944 also reduced the average seizure duration and cycle frequency. Both compounds were well tolerated in rats. Given its in vitro and in vivo activities, Z944 will progress to phase 1 clinical studies to test its safety in humans. Further studies will be needed to determine whether its marked effects in the rat model of absence epilepsy translate to the more complicated human condition. Absence seizures are a common seizure type in children with genetic generalized epilepsy and are characterized by a temporary loss of awareness, arrest of physical activity, and accompanying spike-and-wave discharges on an electroencephalogram. They arise from abnormal, hypersynchronous neuronal firing in brain thalamocortical circuits. Currently available therapeutic agents are only partially effective and act on multiple molecular targets, including γ-aminobutyric acid (GABA) transaminase, sodium channels, and calcium (Ca2+) channels. We sought to develop high-affinity T-type specific Ca2+ channel antagonists and to assess their efficacy against absence seizures in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS) model. Using a rational drug design strategy that used knowledge from a previous N-type Ca2+ channel pharmacophore and a high-throughput fluorometric Ca2+ influx assay, we identified the T-type Ca2+ channel blockers Z941 and Z944 as candidate agents and showed in thalamic slices that they attenuated burst firing of thalamic reticular nucleus neurons in GAERS. Upon administration to GAERS animals, Z941 and Z944 potently suppressed absence seizures by 85 to 90% via a mechanism distinct from the effects of ethosuximide and valproate, two first-line clinical drugs for absence seizures. The ability of the T-type Ca2+ channel antagonists to inhibit absence seizures and to reduce the duration and cycle frequency of spike-and-wave discharges suggests that these agents have a unique mechanism of action on pathological thalamocortical oscillatory activity distinct from current drugs used in clinical practice.
Biochimica et Biophysica Acta | 2013
Stuart M. Cain; Terrance P. Snutch
Low voltage-activated (LVA) T-type calcium channels are well regarded as a key mechanism underlying the generation of neuronal burst-firing. Their low threshold for activation combined with a rapid and transient calcium conductance generates low-threshold calcium potentials (LTCPs), upon the crest of which high frequency action potentials fire for a brief period. Experiments using simultaneous electroencephalography (EEG) and intracellular recordings demonstrate that neuronal burst-firing is a likely causative component in the generation of normal sleep patterns as well as some pathophysiological conditions, such as epileptic seizures. However, less is known as to how these neuronal bursts impact brain behavior, in particular network synchronization. In this review we summarize recent findings concerning the role of T-type calcium channels in burst-firing and discuss how they likely contribute to the generation of network synchrony. We further outline the function of burst-firing and network synchrony in terms of epileptic seizures. This article is part of a Special Issue entitled: Calcium channels.
Biofactors | 2011
Stuart M. Cain; Terrance P. Snutch
Voltage-gated calcium channels are a family of integral membrane calcium-selective proteins found in all excitable and many nonexcitable cells. Calcium influx affects membrane electrical properties by depolarizing cells and generally increasing excitability. Calcium entry further regulates multiple intracellular signaling pathways as well as the biochemical factors that mediate physiological functions such as neurotransmitter release and muscle contraction. Small changes in the biophysical properties or expression of calcium channels can result in pathophysiological changes leading to serious chronic disorders. In humans, mutations in calcium channel genes have been linked to a number of serious neurological, retinal, cardiac, and muscular disorders.
Cell | 2015
Ravi L. Rungta; Hyun B. Choi; John R. Tyson; Aqsa Malik; Lasse Dissing-Olesen; Paulo J.C. Lin; Stuart M. Cain; Pieter R. Cullis; Terrance P. Snutch; Brian A. MacVicar
Cytotoxic brain edema triggered by neuronal swelling is the chief cause of mortality following brain trauma and cerebral infarct. Using fluorescence lifetime imaging to analyze contributions of intracellular ionic changes in brain slices, we find that intense Na(+) entry triggers a secondary increase in intracellular Cl(-) that is required for neuronal swelling and death. Pharmacological and siRNA-mediated knockdown screening identified the ion exchanger SLC26A11 unexpectedly acting as a voltage-gated Cl(-) channel that is activated upon neuronal depolarization to membrane potentials lower than -20 mV. Blockade of SLC26A11 activity attenuates both neuronal swelling and cell death. Therefore cytotoxic neuronal edema occurs when sufficient Na(+) influx and depolarization is followed by Cl(-) entry via SLC26A11. The resultant NaCl accumulation causes subsequent neuronal swelling leading to neuronal death. These findings shed light on unique elements of volume control in excitable cells and lay the ground for the development of specific treatments for brain edema.
Channels | 2010
Laurence S. David; Esperanza Garcia; Stuart M. Cain; Elana Thau; John R. Tyson; Terrance P. Snutch
Low voltage-activated T-type calcium (Ca) channels contribute to the normal development of the heart and are also implicated in pathophysiological states such as cardiac hypertrophy. Functionally distinct T-type Ca channel isoforms can be generated by alternative splicing from each of three different T-type genes (CaV3.1, CaV3.2,CaV3 .3), although it remains to be described whether specific splice variants are associated with developmental states and pathological conditions. We aimed to identify and functionally characterize CaV3.2 T-type Ca channel alternatively spliced variants from newborn animals and to compare with adult normotensive and spontaneously hypertensive rats (SHR). DNA sequence analysis of full-length CaV3.2 cDNA generated from newborn heart tissue identified ten major regions of alternative splicing, the more common variants of which were analyzed by quantitative real-time PCR (qRT-PCR) and also subject to functional examination by whole-cell patch clamp. The main findings are that: (1) cardiac CaV3.2 T-type Ca channels are subject to considerable alternative splicing, (2) there is preferential expression ofCaV3 .2(-25) splice variant channels in newborn rat heart with a developmental shift in adult heart that results in approximately equal levels of expression of both (+25) and (-25) exon variants, (3) in the adult stage of hypertensive rats there is a both an increase in overallCaV3 .2 expression and a shift towards expression of CaV3.2(+25) containing channels as the predominant form, and (4) alternative splicing confers a variant-specific voltage-dependent facilitation ofCaV3 .2 channels. We conclude that CaV3.2 alternative splicing generates significant T-type Ca channel structural and functional diversity with potential implications relevant to cardiac developmental and pathophysiological states.
British Journal of Clinical Pharmacology | 2014
Kim L. Powell; Stuart M. Cain; Terrance P. Snutch; Terence J. O'Brien
Low voltage‐activated T‐type calcium channels were originally cloned in the 1990s and much research has since focused on identifying the physiological roles of these channels in health and disease states. T‐type calcium channels are expressed widely throughout the brain and peripheral tissues, and thus have been proposed as therapeutic targets for a variety of diseases such as epilepsy, insomnia, pain, cancer and hypertension. This review discusses the literature concerning the role of T‐type calcium channels in physiological and pathological processes related to epilepsy. T‐type calcium channels have been implicated in pathology of both the genetic and acquired epilepsies and several anti‐epileptic drugs (AEDs) in clinical use are known to suppress seizures via inhibition of T‐type calcium channels. Despite the fact that more than 15 new AEDs have become clinically available over the past 20 years at least 30% of epilepsy patients still fail to achieve seizure control, and many patients experience unwanted side effects. Furthermore there are no treatments that prevent the development of epilepsy or mitigate the epileptic state once established. Therefore there is an urgent need for the development of new AEDs that are effective in patients with drug resistant epilepsy, are anti‐epileptogenic and are better tolerated. We also review the mechanisms of action of the current AEDs with known effects on T‐type calcium channels and discuss novel compounds that are being investigated as new treatments for epilepsy.
Epilepsia | 2010
Stuart M. Cain; Terrance P. Snutch
Voltage‐gated calcium channels contribute to the control of excitability at both the cellular and neural network levels. Alterations in the expression or biophysical properties of specific subtypes of calcium channels can have pathophysiologic effects on the frequency and patterns of action potential firing and causally contribute to epileptic seizures. For an expanded treatment of this topic see Jasper’s Basic Mechanisms of the Epilepsies, Fourth Edition (Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado‐Escueta AV, eds), published by Oxford University Press (available on the National Library of Medicine Bookshelf [NCBI] at http://www.ncbi.nlm.nih.gov/books).
Cell Calcium | 2014
Elia Ranzato; Valeria Magnelli; Simona Martinotti; Zeina Waheed; Stuart M. Cain; Terrance P. Snutch; Carla Marchetti; Bruno Burlando
We used MCF-7 human breast cancer cells that endogenously express Cav3.1 and Cav3.2 T-type Ca(2+) channels toward a mechanistic study on the effect of EGCG on [Ca(2+)]i. Confocal Ca(2+) imaging showed that EGCG induces a [Ca(2+)]i spike which is due to extracellular Ca(2+) entry and is sensitive to catalase and to low-specificity (mibefradil) and high-specificity (Z944) T-type Ca(2+)channel blockers. siRNA knockdown of T-type Ca(2+) channels indicated the involvement of Cav3.2 but not Cav3.1. Application of EGCG to HEK cells expressing either Cav3.2 or Cav3.1 induced enhancement of Cav3.2 and inhibition of Cav3.1 channel activity. Measurements of K(+) currents in MCF-7 cells showed a reversible, catalase-sensitive inhibitory effect of EGCG, while siRNA for the Kv1.1 K(+) channel induced a reduction of the EGCG [Ca(2+)]i spike. siRNA for Cav3.2 reduced EGCG cytotoxicity to MCF-7 cells, as measured by calcein viability assay. Together, data suggest that EGCG promotes the activation of Cav3.2 channels through K(+) current inhibition leading to membrane depolarization, and in addition increases Cav3.2 currents. Cav3.2 channels are in part responsible for EGCG inhibition of MCF-7 viability, suggesting that deregulation of [Ca(2+)]i by EGCG may be relevant in breast cancer treatment.