Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John S. Gallagher is active.

Publication


Featured researches published by John S. Gallagher.


Publications of the Astronomical Society of the Pacific | 1995

THE PERFORMANCE AND CALIBRATION OF WFPC2 ON THE HUBBLE SPACE TELESCOPE

Jon A. Holtzman; J. Jeff Hester; Stefano Casertano; John T. Trauger; Alan M. Watson; G. E. Ballester; Christopher J. Burrows; John Clarke; David Crisp; Robin W. Evans; John S. Gallagher; Richard E. Griffiths; John G. Hoessel; L. D. Matthews; Jeremy R. Mould; Paul A. Scowen; Karl R. Stapelfeldt; James A. Westphal

The WFPC2 was installed in the Hubble Space Telescope (HST) in 1993 December. Since then, the instrument has been providing high-quality images. A significant amount of calibration data has been collected to aid in the understanding of the on-orbit performance of the instrument. Generally, the behavior of the camera is similar to its performance during the system-level thermal vacuum test at JPL in 1993 May. Surprises were a significant charge-transfer-efficiency (CTE) problem and a significant growth rate in hot pixels at the original operating temperature of the CCDs (-76 °C). The operating temperature of the WFPC2 CCDs was changed to -88 °C on 1994 April 23, and significant improvements in CTE and hot pixels are seen at this temperature. In this paper we describe the on-orbit performance of the WFPC2. We discuss the optical and thermal history, the instrument throughput and stability, the PSF, the effects of undersampling on photometry, the properties of cosmic rays observed on-orbit, and the geometric distortion in the camera. We present the best techniques for the reduction of WFPC2 data, and describe the construction of calibration products including superbiases, superdarks, and fiat fields.


The Astronomical Journal | 2003

The Progenitors of Dwarf Spheroidal Galaxies

Eva K. Grebel; John S. Gallagher; Daniel R. Harbeck

The gas-deficient dwarf spheroidal (dSph) galaxies present an evolutionary puzzle that we explore in 40 early-type and late-type dwarfs in the Local Group and nearby field. Although dSph’s experienced star formation over extended time spans in their youths, today all but one are completely free of detectable interstellar material, even in the Fornax dSph, where stars formed in the last 100 Myr. Combining photometric and spectroscopic stellar metallicity estimates for red giant branches with high-sensitivity H i 21 cm line data from the literature, we show that the well-established offset in luminosity-metallicity relationships for dSph’s and dwarf irregular (dIrr) galaxies exists also when confining the comparison to their old stellar populations: dSph’s have higher mean stellar metallicities for a fixed optical luminosity. Evidently star formation in younger dSph’s was more vigorous than in the youthful dIrr’s, leading to more efficient enrichment. Dwarf galaxies, whose locus in the luminosity-metallicity diagram is consistent with that of dSph’s, even when baryonic luminosities are considered, are the ‘‘ transition-type dwarfs ’’ Phoenix, DDO 210, LGS 3, Antlia, and KKR 25. These dwarfs have mixed dIrr/dSph morphologies, low stellar masses, low angular momentum, and H i contents of at most a few 10 6 M� . Unlike dIrr’s many transition-type dwarfs would closely resemble dSph’s if their gas were removed, as required to become a dSph; they are likely dSph progenitors. As gas removal is the key factor for such a transition, we consider the empirical evidence in favor and against various gas removal processes. We suggest that internal gas removal mechanisms are inadequate and favor ram-pressure stripping to clean the bulk of interstellar matter from galaxies to make dSph’s. A combination of initial conditions and environment seems to support the formation of dSph’s: nearby dSph’s appear to form from small galaxies with active early star formation, whose evolution halts due to externally induced gas loss. Transition-type dwarfs, then, are dSph’s that kept their interstellar medium and therefore should replace dSph’s in isolated locations where stripping is ineffective.


Science | 1996

Far-Ultraviolet Imaging of Jupiter's Aurora and the Io “Footprint”

John Clarke; G. E. Ballester; John T. Trauger; Robin W. Evans; J. E. P. Connerney; Karl R. Stapelfeldt; David Crisp; Paul D. Feldman; Christopher J. Burrows; Stefano Casertano; John S. Gallagher; Richard E. Griffiths; J. Jeff Hester; John G. Hoessel; Jon A. Holtzman; John E. Krist; Vikki Meadows; Jeremy R. Mould; Paul A. Scowen; Alan M. Watson; James A. Westphal

Far-ultraviolet images of Jupiter from the Hubble Space Telescope Wide Field Planetary Camera 2 reveal polar auroral emissions at 300 kilometer resolution and three times higher sensitivity than previously achieved. Persistent features include a main oval containing most of the emission and magnetically connected to the middle magnetosphere, diffuse and variable emissions poleward of the main oval, and discrete emission from Ios magnetic footprint equatorward of the oval. The auroral emissions are variable, exhibit magnetic conjugacy, and are visible above the planet limb. All emissions approximately co-rotate with Jupiter except the Io “footprint,” which is fixed along Ios magnetic flux tube.


The Astronomical Journal | 2001

On the Nature of the NGC 1275 System

Christopher J. Conselice; John S. Gallagher; Rosemary F. G. Wyse

Subarcsecond images, taken in B, R, and Hα filters, and area spectroscopy obtained with the WIYN 3.5 m telescope provide the basis for an investigation of the unusual structures in the stellar body and ionized gas in and around the Perseus Cluster central galaxy NGC 1275. Our Hα filter is tuned to gas at the velocity of NGC 1275, revealing complex, probably unresolved, small-scale features in the extended ionized gas, located up to 50 h kpc from NGC 1275. The mean Hα surface brightness varies little along the outer filaments; this, together with the complex excitation state demonstrated by spectra, imply that the filaments are likely to be tubes, or ribbons, of gas. The morphology, location, and inferred physical parameters of the gas in the filaments are consistent with a model, whereby the filaments form through compression of the intracluster gas by relativistic plasma emitted from the active nucleus of NGC 1275. Imaging spectroscopy with the DensePak fiber array on WIYN suggests partial rotational support of the inner component of low-velocity ionized gas. Our broadband data is used to derive color maps of the stellar distribution and also to investigate asymmetries in the stellar surface brightness. We confirm and extend evidence for features in the stellar body of NGC 1275 and identify outer stellar regions containing very blue, probably very young, star clusters. We interpret these as evidence for recent accretion of a gas-rich system, with subsequent star formation. Other star clusters are identified, some of which are possibly associated with the high-velocity 8200 km s-1 emission-line system being in the same projected location. We suggest that two main processes, which may be causally connected, are responsible for the rich phenomenology of the NGC 1275 system—NGC 1275 experienced a recent merger and/or interaction with a group of gas-rich galaxies, and recent outflows from its AGN have compressed the intracluster gas and perhaps the gas in the infalling galaxies to produce a complex web of filaments.


Monthly Notices of the Royal Astronomical Society | 2001

M82-F: a doomed super star cluster?

Linda J. Smith; John S. Gallagher

We present high dispersion echelle spectroscopy of the very luminous, young super star cluster (SSC) ‘F’ in M82, obtained with the 4.2-m William Herschel Telescope (WHT), for the purpose of deriving its dynamical mass and assessing whether it will survive to become an old globular cluster. In addition to the stellar lines, the spectrum contains complex Na I absorption and broad emission lines from the ionized gas. We measure a stellar velocity dispersion of 13.4±0.7 kms −1 , a projected half-light radius of 2.8 ± 0.3 pc from archival HST/WFPC2 images, and derive a dynamical mass of 1.2±0.1×10 6 M⊙, demonstrating that M82-F is a very massive, compact cluster. We determine that the current luminosity-to-mass ratio (LV /M)⊙ for M82-F is 45 ± 13. Comparison with spectral synthesis models shows that (LV /M)⊙ is a factor of � 5 higher than that predicted for a standard Kroupa (2001) initial mass function (IMF) at the well-determined age for M82-F of 60 ± 20 Myr. This high value of (LV /M)⊙ indicates a deficit of low mass stars in M82-F; the current mass function (MF) evidently is ‘top-heavy’. We find that a lower mass cutoff of 2–3M⊙ is required to match the observations for a MF with a slope � = 2.3. Since the cluster apparently lacks longlived low mass stars, it will not become an old globular cluster, but probably will dissolve at an age of 62 Gyr. We also derive up-dated luminosity-to-mass ratios for the younger SSCs NGC 1569A and NGC 1705-1. For the first object, the observations are consistent with a slightly steeper MF (� = 2.5) whereas for NGC 1705-1, the observed ratio requires the MF to be truncated near 2 M⊙ for a slope of � = 2.3. We discuss the implications of our findings in the context of large scale IMF variations; with the present data the top-heavy MF could reflect a local mass segregation effect during the birth of the cluster. M82-F likely formed in a dense molecular cloud; however, its high radial velocity with respect to the centre of M82 (� 175 km s −1 ) suggests it is on an eccentric orbit and now far from its birthplace, so the environment of its formation is unknown.


The Astronomical Journal | 2008

Age Determination of Six Intermediate-Age Small Magellanic Cloud Star Clusters with Hst/acs

Katharina Glatt; Eva K. Grebel; E. Sabbi; John S. Gallagher; Antonella Nota; Marco Sirianni; G. Clementini; M. Tosi; Daniel R. Harbeck; Andreas Koch; Andrea Kayser; Gary S. Da Costa

We present a photometric analysis of the star clusters Lindsay 1, Kron 3, NGC 339, NGC 416, Lindsay 38, and NGC 419 in the Small Magellanic Cloud (SMC), observed with the Hubble Space Telescope Advanced Camera for Surveys (ACS) in the F555W and F814W filters. Our color-magnitude diagrams (CMDs) extend ~3.5 mag deeper than the main-sequence turnoff points, deeper than any previous data. Cluster ages were derived using three different isochrone models: Padova, Teramo, and Dartmouth, which are all available in the ACS photometric system. Fitting observed ridgelines for each cluster, we provide a homogeneous and unique set of low-metallicity, single-age fiducial isochrones. The cluster CMDs are best approximated by the Dartmouth isochrones for all clusters, except for NGC 419 where the Padova isochrones provided the best fit. Using Dartmouth isochrones we derive ages of 7.5 ± 0.5 Gyr (Lindsay 1), 6.5 ± 0.5 Gyr (Kron 3), 6 ± 0.5 Gyr (NGC 339), 6 ± 0.5 Gyr (NGC 416), and 6.5 ± 0.5 Gyr (Lindsay 38). The CMD of NGC 419 shows several main-sequence turnoffs, which belong to the cluster and to the SMC field. We thus derive an age range of 1.2-1.6 Gyr for NGC 419. We confirm that the SMC contains several intermediate-age populous star clusters with ages unlike those of the Large Magellanic Cloud and the Milky Way. Interestingly, our intermediate-age star clusters have a metallicity spread of ~0.6 dex, which demonstrates that the SMC does not have a smooth, monotonic age-metallicity relation. We find an indication for centrally-concentrated blue straggler star candidates in NGC 416, while these are not present for the other clusters. Using the red clump magnitudes, we find that the closest cluster, NGC 419 (~50 kpc), and the farthest cluster, Lindsay 38 (~67 kpc), have a relative distance of ~17 kpc, which confirms the large depth of the SMC. The three oldest SMC clusters (NGC 121, Lindsay 1, and Kron 3) lie in the northwestern part of the SMC, while the youngest (NGC 419) is located near the SMC main body.


The Astrophysical Journal | 1994

Hubble Space Telescope imaging of super-star clusters in NGC 1569 and NGC 1705

Robert W. O'Connell; John S. Gallagher; Deidre A. Hunter

We examine the structural properties of three super-star clusters in the nearby, H I-rich galaxies NGC 1569 and NGC 1705. The clusters, which have total absolute V magnitudes between -13.3 and -14.1, appear to be point sources on ground-based images but are partially resolved in new images obtained with the Hubble Space Telescope (HST) Planetary Camera. From deconvolved V- and I-band images we find that the three clusters have very compact cores with extended halos that are partially resolved into individual stars. Using new distances to the galaxies derived from color-magnitude diagrams for field stars, we find that the half-light radii are 2.2-3.4 pc. The cluster in NGC 1705 is barely resolved in the HST images. The clusters in NGC 1569, on the other hand, show significant substructure in their cores and ellipticities that are comparable to the flattenings seen in young clusters in the Large Magellanic Cloud (LMC). The clusters show internal (V-I) color gradients. The properties of these clusters are similar to R136, the core of the luminous star-forming complex 30 Doradus in the LMC, except that R136 has a lower luminosity and central surface brightness. The half-light surface brightness of the brightest cluster (NGC 1569 A) is 1.3 x 10(exp 6) L(sub v) solar/ sq cm, which is over 65 times higher than R136 and 1200 times higher than the mean rich LMC star cluster other than R136 after allowing for aging effects. The next brightest clusters in each of these galaxies are greater than or = 2 mag fainter. Thus, the super-star clusters represent an extreme but uncommon mode of star formation. In terms of luminosity and size, they appear to be good analogs of young globular clusters.


The Astrophysical Journal | 1995

Hubble Space Telescope Observations of the SN 1987A Triple Ring Nebula

Christopher J. Burrows; John E. Krist; J. Jeff Hester; Raghvendra Sahai; John T. Trauger; Karl R. Stapelfeldt; John S. Gallagher; G. E. Ballester; Stefano Casertano; John Clarke; David Crisp; Robin W. Evans; Richard E. Griffiths; John G. Hoessel; Jon A. Holtzman; Jeremy R. Mould; Paul A. Scowen; Alan M. Watson; James A. Westphal

We have observed SN 1987A with the optically corrected WFPC2 on the Hubble Space Telescope both in emission lines and in the UV and optical continuum. The previously observed outer nebular structure is shown to be part of two closed unresolved loops. These loops were flash-ionized by the supernova itself. They are not caused by limb brightening of an hourglass shell produced by the interaction of the winds from the progenitor. The inner ring is seen to be extended and may be connected to the new outer rings by sheets of material. However, beyond the outer rings, emission is not seen, implying a very low density (n 1000. This density contrast of at least 100 is difficult to reconcile with the conventional picture of the progenitor evolution. Two models for the rings are presented, but each is deficient in important respects. A proper understanding of this system will require new physical insight.


The Astrophysical Journal | 2001

Galaxy Populations and Evolution in Clusters. I. Dynamics and the Origin of Low-Mass Galaxies in the Virgo Cluster

Christopher J. Conselice; John S. Gallagher; Rosemary F. G. Wyse

Early-type dwarfs are the most common galaxy in the local universe, yet their origin and evolution remain a mystery. Various cosmological scenarios predict that dwarf-like galaxies in dense areas are the first to form and hence should be the oldest stellar systems in clusters. By using radial velocities of early-type dwarfs in the Virgo cluster we demonstrate that these galaxies are not an old cluster population but have signatures of production from the infall of field galaxies. Evidence of this includes the combined large dispersions and substructure in spatial and kinematic distributions for Virgo early-type dwarfs and a velocity dispersion ratio with giant ellipticals expected for virialized and accreted populations. We also argue that these galaxies cannot originate from accreted field dwarfs, but must have physically evolved from a precursor population, of different morphology, that fell into Virgo some time in the past.


The Astrophysical Journal | 2002

The Star Formation History of the Large Magellanic Cloud

Tammy A. Smecker-Hane; Andrew A. Cole; John S. Gallagher; Peter B. Stetson

Using WFPC2 on board the Hubble Space Telescope, we have created deep color-magnitude diagrams in the V and I passbands for approximately 105 stars in a field at the center of the LMC bar and another in the disk. The main-sequence luminosity functions (LFs) from 19V23.5, the red clump and horizontal branch morphologies, and the differential Hess diagram of the two fields all strongly imply that the disk and bar have significantly different star formation histories (SFHs). The disks SFH has been relatively smooth and continuous over the last 15 Gyr, while the bars SFH was dominated by star formation episodes at intermediate ages. Comparison of the LF against predictions based on Padova theoretical stellar evolution models and an assumed age-metallicity relationship allows us to identify the dominant stellar populations in the bar with episodes of star formation that occurred from 4 to 6 and 1 to 2 Gyr ago. These events accounted for 25% and 15%, respectively, of its stellar mass. The disk field may share a mild enhancement in SF for the younger episode, and thus we identify the 4 to 6 Gyr episode with the formation of the LMC bar.

Collaboration


Dive into the John S. Gallagher's collaboration.

Top Co-Authors

Avatar

Paul A. Scowen

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Christopher J. Burrows

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

John T. Trauger

Jet Propulsion Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Crisp

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Jeff Hester

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John G. Hoessel

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jon A. Holtzman

New Mexico State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge