Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John T. Benjamin is active.

Publication


Featured researches published by John T. Benjamin.


Developmental Biology | 2009

The role of integrin α8β1 in fetal lung morphogenesis and injury

John T. Benjamin; David C. Gaston; Brian Halloran; Lynn M. Schnapp; Roy Zent; Lawrence S. Prince

Prenatal inflammation prevents normal lung morphogenesis and leads to bronchopulmonary dysplasia (BPD), a common complication of preterm birth. We previously demonstrated in a bacterial endotoxin mouse model of BPD that disrupting fibronectin localization in the fetal lung mesenchyme causes arrested saccular airway branching. In this study we show that expression of the fibronectin receptor, integrin alpha8beta1 is decreased in the lung mesenchyme in the same inflammation model suggesting it is required for normal lung development. We verified a role for integrin alpha8beta1 in lung development using integrin alpha8-null mice, which develop fusion of the medial and caudal lobes as well as abnormalities in airway division. We further show in vivo and in vitro that alpha8-null fetal lung mesenchymal cells fail to form stable adhesions and have increased migration. Thus we propose that integrin alpha8beta1 plays a critical role in lung morphogenesis by regulating mesenchymal cell adhesion and migration. Furthermore, our data suggest that disruption of the interactions between extracellular matrix and integrin alpha8beta1 may contribute to the pathogenesis of BPD.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2010

Chorioamnionitis stimulates angiogenesis in saccular stage fetal lungs via CC chemokines

J. Davin Miller; John T. Benjamin; David R. Kelly; David B. Frank; Lawrence S. Prince

The fetal lung vasculature forms in tandem with developing airways. Whereas saccular airway morphogenesis is arrested in bronchopulmonary dysplasia (BPD), the potential vascular phenotype in BPD at this stage of development is less well-understood. As inflammation increases the risk of BPD and induces arrest of saccular airway morphogenesis, we tested the effects of Escherichia coli LPS on fetal mouse lung vascular development. Injecting LPS into the amniotic fluid of Tie2-lacZ endothelial reporter mice at embryonic day 15 stimulated angiogenesis in the saccular stage fetal lung mesenchyme. LPS also increased the number of endothelial cells in saccular stage fetal mouse lung explants. Inflammation appeared to directly promote vascular development, as LPS stimulated pulmonary microvascular endothelial cell angiogenesis, cell migration, and proliferation in vitro. Whereas LPS did not increase expression of VEGF, angiopoietin-1 (Ang-1), Tie2, fetal liver kinase-1 (Flk-1), fms-like tyrosine kinase-1 (Flt-1), PDGFA, PDGFB, heparin-binding EGF-like growth factor (HB-EGF), or connective tissue growth factor (CTGF), LPS did stimulate the production of the angiogenic CC chemokines macrophage inflammatory protein-1α (MIP-1α) and monocyte chemoattractant protein-1 (MCP-1). Both MIP-1α and MCP-1 increased angiogenesis in fetal mouse lung explants. In addition, inhibitory antibodies against MIP-1α and MCP-1 blocked the effects of LPS on fetal lung vascular development, suggesting these chemokines are downstream mediators of LPS-induced angiogenesis. We speculate that an inflammation-mediated surge in angiogenesis could lead to formation of aberrant alveolar capillaries in the lungs of patients developing BPD.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Targeting IL-17A attenuates neonatal sepsis mortality induced by IL-18

James L. Wynn; Christopher S. Wilson; Jacek Hawiger; Philip O. Scumpia; Andrew F. Marshall; Jin-Hua Liu; Irina Zharkikh; Hector R. Wong; Patrick Lahni; John T. Benjamin; Erin J. Plosa; Jörn-Hendrik Weitkamp; Edward R. Sherwood; Lyle L. Moldawer; Ricardo Ungaro; Henry V. Baker; M. Cecilia Lopez; Steven J. McElroy; Natacha Colliou; Mansour Mohamadzadeh; Daniel J. Moore

Significance Infants born prematurely suffer the greatest incidence of and impact from sepsis among all age groups. Therapeutic interventions aimed at reducing morbidity and mortality in this vulnerable population have been unsuccessful. Interleukin (IL)-18 is a proinflammatory member of the IL-1 superfamily. Serum IL-18 concentrations in uninfected premature infants are increased as compared with healthy adults. We show that IL-18 in the setting of sepsis results in gut injury, a potentiation of the host’s inflammatory response, increased bacteremia, and mortality mediated by IL-1 receptor 1 (IL-1R1)–dependent IL-17A produced by γδT and myeloid cells. The discovery of this novel IL-18/IL-1R1/IL-17A axis brings new hope for therapeutic interventions that target downstream IL-17A and ultimately reduce the increased mortality from sepsis in this understudied population. Interleukin (IL)-18 is an important effector of innate and adaptive immunity, but its expression must also be tightly regulated because it can potentiate lethal systemic inflammation and death. Healthy and septic human neonates demonstrate elevated serum concentrations of IL-18 compared with adults. Thus, we determined the contribution of IL-18 to lethality and its mechanism in a murine model of neonatal sepsis. We find that IL-18–null neonatal mice are highly protected from polymicrobial sepsis, whereas replenishing IL-18 increased lethality to sepsis or endotoxemia. Increased lethality depended on IL-1 receptor 1 (IL-1R1) signaling but not adaptive immunity. In genome-wide analyses of blood mRNA from septic human neonates, expression of the IL-17 receptor emerged as a critical regulatory node. Indeed, IL-18 administration in sepsis increased IL-17A production by murine intestinal γδT cells as well as Ly6G+ myeloid cells, and blocking IL-17A reduced IL-18–potentiated mortality to both neonatal sepsis and endotoxemia. We conclude that IL-17A is a previously unrecognized effector of IL-18–mediated injury in neonatal sepsis and that disruption of the deleterious and tissue-destructive IL-18/IL-1/IL-17A axis represents a novel therapeutic approach to improve outcomes for human neonates with sepsis.


Development | 2014

Epithelial β1 integrin is required for lung branching morphogenesis and alveolarization

Erin J. Plosa; Lisa R. Young; Peter M. Gulleman; Vasiliy V. Polosukhin; Rinat Zaynagetdinov; John T. Benjamin; Amanda M. Im; Riet van der Meer; Linda A. Gleaves; Nada Bulus; Wei Han; Lawrence S. Prince; Timothy S. Blackwell; Roy Zent

Integrin-dependent interactions between cells and extracellular matrix regulate lung development; however, specific roles for β1-containing integrins in individual cell types, including epithelial cells, remain incompletely understood. In this study, the functional importance of β1 integrin in lung epithelium during mouse lung development was investigated by deleting the integrin from E10.5 onwards using surfactant protein C promoter-driven Cre. These mutant mice appeared normal at birth but failed to gain weight appropriately and died by 4 months of age with severe hypoxemia. Defects in airway branching morphogenesis in association with impaired epithelial cell adhesion and migration, as well as alveolarization defects and persistent macrophage-mediated inflammation were identified. Using an inducible system to delete β1 integrin after completion of airway branching, we showed that alveolarization defects, characterized by disrupted secondary septation, abnormal alveolar epithelial cell differentiation, excessive collagen I and elastin deposition, and hypercellularity of the mesenchyme occurred independently of airway branching defects. By depleting macrophages using liposomal clodronate, we found that alveolarization defects were secondary to persistent alveolar inflammation. β1 integrin-deficient alveolar epithelial cells produced excessive monocyte chemoattractant protein 1 and reactive oxygen species, suggesting a direct role for β1 integrin in regulating alveolar homeostasis. Taken together, these studies define distinct functions of epithelial β1 integrin during both early and late lung development that affect airway branching morphogenesis, epithelial cell differentiation, alveolar septation and regulation of alveolar homeostasis.


JCI insight | 2016

Epithelial-macrophage interactions determine pulmonary fibrosis susceptibility in Hermansky-Pudlak syndrome

Lisa R. Young; Peter M. Gulleman; Chelsi W. Short; Harikrishna Tanjore; Taylor P. Sherrill; Aidong Qi; Andrew P. McBride; Rinat Zaynagetdinov; John T. Benjamin; William Lawson; Sergey V. Novitskiy; Timothy S. Blackwell

Alveolar epithelial cell (AEC) dysfunction underlies the pathogenesis of pulmonary fibrosis in Hermansky-Pudlak syndrome (HPS) and other genetic syndromes associated with interstitial lung disease; however, mechanisms linking AEC dysfunction and fibrotic remodeling are incompletely understood. Since increased macrophage recruitment precedes pulmonary fibrosis in HPS, we investigated whether crosstalk between AECs and macrophages determines fibrotic susceptibility. We found that AECs from HPS mice produce excessive MCP-1, which was associated with increased macrophages in the lungs of unchallenged HPS mice. Blocking MCP-1/CCR2 signaling in HPS mice with genetic deficiency of CCR2 or targeted deletion of MCP-1 in AECs normalized macrophage recruitment, decreased AEC apoptosis, and reduced lung fibrosis in these mice following treatment with low-dose bleomycin. We observed increased TGF-β production by HPS macrophages, which was eliminated by CCR2 deletion. Selective deletion of TGF-β in myeloid cells or of TGF-β signaling in AECs through deletion of TGFBR2 protected HPS mice from AEC apoptosis and bleomycin-induced fibrosis. Together, these data reveal a feedback loop in which increased MCP-1 production by dysfunctional AECs results in recruitment and activation of lung macrophages that produce TGF-β, thus amplifying the fibrotic cascade through AEC apoptosis and stimulation of fibrotic remodeling.


American Journal of Pathology | 2016

Epithelial-Derived Inflammation Disrupts Elastin Assembly and Alters Saccular Stage Lung Development.

John T. Benjamin; Riet van der Meer; Amanda M. Im; Erin J. Plosa; Rinat Zaynagetdinov; Ankita Burman; Madeline E. Havrilla; Linda A. Gleaves; Vasiliy V. Polosukhin; Gail H. Deutsch; Hiromi Yanagisawa; Jeffrey M. Davidson; Lawrence S. Prince; Lisa R. Young; Timothy S. Blackwell

The highly orchestrated interactions between the epithelium and mesenchyme required for normal lung development can be disrupted by perinatal inflammation in preterm infants, although the mechanisms are incompletely understood. We used transgenic (inhibitory κB kinase β transactivated) mice that conditionally express an activator of the NF-κB pathway in airway epithelium to investigate the impact of epithelial-derived inflammation during lung development. Epithelial NF-κB activation selectively impaired saccular stage lung development, with a phenotype comprising rapidly progressive distal airspace dilation, impaired gas exchange, and perinatal lethality. Epithelial-derived inflammation resulted in disrupted elastic fiber organization and down-regulation of elastin assembly components, including fibulins 4 and 5, lysyl oxidase like-1, and fibrillin-1. Fibulin-5 expression by saccular stage lung fibroblasts was consistently inhibited by treatment with bronchoalveolar lavage fluid from inhibitory κB kinase β transactivated mice, Escherichia coli lipopolysaccharide, or tracheal aspirates from preterm infants exposed to chorioamnionitis. Expression of a dominant NF-κB inhibitor in fibroblasts restored fibulin-5 expression after lipopolysaccharide treatment, whereas reconstitution of fibulin-5 rescued extracellular elastin assembly by saccular stage lung fibroblasts. Elastin organization was disrupted in saccular stage lungs of preterm infants exposed to systemic inflammation. Our study reveals a critical window for elastin assembly during the saccular stage that is disrupted by inflammatory signaling and could be amenable to interventions that restore elastic fiber assembly in the developing lung.


American Journal of Respiratory Cell and Molecular Biology | 2018

Bacterial-derived Neutrophilic Inflammation Drives Lung Remodeling in a Mouse Model of Chronic Obstructive Pulmonary Disease

Bradley W. Richmond; Rui-Hong Du; Wei Han; John T. Benjamin; Riet van der Meer; Linda A. Gleaves; Marshall Guo; Austin McKissack; Yongqin Zhang; Dong-Sheng Cheng; Vasiliy V. Polosukhin; Timothy S. Blackwell

Abstract Loss of secretory IgA is common in the small airways of patients with chronic obstructive pulmonary disease and may contribute to disease pathogenesis. Using mice that lack secretory IgA in the airways due to genetic deficiency of polymeric Ig receptor (pIgR−/− mice), we investigated the role of neutrophils in driving the fibrotic small airway wall remodeling and emphysema that develops spontaneously in these mice. By flow cytometry, we found an increase in the percentage of neutrophils among CD45+ cells in the lungs, as well as an increase in total neutrophils, in pIgR−/− mice compared with wild‐type controls. This increase in neutrophils in pIgR−/− mice was associated with elastin degradation in the alveolar compartment and around small airways, along with increased collagen deposition in small airway walls. Neutrophil depletion using anti‐Ly6G antibodies or treatment with broad‐spectrum antibiotics inhibited development of both emphysema and small airway remodeling, suggesting that airway bacteria provide the stimulus for deleterious neutrophilic inflammation in this model. Exogenous bacterial challenge using lysates prepared from pathogenic and nonpathogenic bacteria worsened neutrophilic inflammation and lung remodeling in pIgR−/− mice. This phenotype was abrogated by antiinflammatory therapy with roflumilast. Together, these studies support the concept that disruption of the mucosal immune barrier in small airways contributes to chronic obstructive pulmonary disease progression by allowing bacteria to stimulate chronic neutrophilic inflammation, which, in turn, drives progressive airway wall fibrosis and emphysematous changes in the lung parenchyma.


American Journal of Pathology | 2018

A Shared Pattern of β-Catenin Activation in Bronchopulmonary Dysplasia and Idiopathic Pulmonary Fibrosis

Jennifer M.S. Sucre; Gail H. Deutsch; Christopher S. Jetter; Namasivayam Ambalavanan; John T. Benjamin; Linda A. Gleaves; Bryan A. Millis; Lisa R. Young; Timothy S. Blackwell; Jonathan A. Kropski; Susan H. Guttentag

Wnt/β-catenin signaling is necessary for normal lung development, and abnormal Wnt signaling contributes to the pathogenesis of both bronchopulmonary dysplasia (BPD) and idiopathic pulmonary fibrosis (IPF), fibrotic lung diseases that occur during infancy and aging, respectively. Using a library of human normal and diseased human lung samples, we identified a distinct signature of nuclear accumulation of β-catenin phosphorylated at tyrosine 489 and epithelial cell cytosolic localization of β-catenin phosphorylated at tyrosine 654 in early normal lung development and fibrotic lung diseases BPD and IPF. Furthermore, this signature was recapitulated in murine models of BPD and IPF. Image analysis of immunofluorescence colocalization demonstrated a consistent pattern of elevated nuclear phosphorylated β-catenin in the lung epithelium and surrounding mesenchyme in BPD and IPF, closely resembling the pattern observed in 18-week fetal lung. Nuclear β-catenin phosphorylated at tyrosine 489 associated with an increased expression of Wnt target gene AXIN2, suggesting that the observed β-catenin signature is of functional significance during normal development and injury repair. The association of specific modifications of β-catenin during normal lung development and again in response to lung injury supports the widely held concept that repair of lung injury involves the recapitulation of developmental programs. Furthermore, these observations suggest that β-catenin phosphorylation has potential as a therapeutic target for the treatment and prevention of both BPD and IPF.


American Journal of Respiratory Cell and Molecular Biology | 2018

Successful Establishment of Primary Type 2 Alveolar Epithelium with 3D Organotypic Co-culture

Jennifer M.S. Sucre; Christopher S. Jetter; Holli A. Loomans; Janice A. Williams; Erin J. Plosa; John T. Benjamin; Lisa R. Young; Jonathan A. Kropski; Carla Calvi; Seunghyi Kook; Ping Wang; Linda A. Gleaves; Adel Eskaros; Laura Goetzl; Timothy S. Blackwell; Susan H. Guttentag; Andries Zijlstra

&NA; Alveolar type II (AT2) epithelial cells are uniquely specialized to produce surfactant in the lung and act as progenitor cells in the process of repair after lung injury. AT2 cell injury has been implicated in several lung diseases, including idiopathic pulmonary fibrosis and bronchopulmonary dysplasia. The inability to maintain primary AT2 cells in culture has been a significant barrier in the investigation of pulmonary biology. We have addressed this knowledge gap by developing a three‐dimensional (3D) organotypic coculture using primary human fetal AT2 cells and pulmonary fibroblasts. Grown on top of matrix‐embedded fibroblasts, the primary human AT2 cells establish a monolayer and have direct contact with the underlying pulmonary fibroblasts. Unlike conventional two‐dimensional (2D) culture, the structural and functional phenotype of the AT2 cells in our 3D organotypic culture was preserved over 7 days of culture, as evidenced by the presence of lamellar bodies and by production of surfactant proteins B and C. Importantly, the AT2 cells in 3D cocultures maintained the ability to replicate, with approximately 60% of AT2 cells staining positive for the proliferation marker Ki67, whereas no such proliferation is evident in 2D cultures of the same primary AT2 cells. This organotypic culture system enables interrogation of AT2 epithelial biology by providing a reductionist in vitro model in which to investigate the response of AT2 epithelial cells and AT2 cell‐fibroblast interactions during lung injury and repair.


Pediatric Research | 2018

Effects of antenatal betamethasone on preterm human and mouse ductus arteriosus: comparison with baboon data

Elaine L. Shelton; Nahid Waleh; Erin J. Plosa; John T. Benjamin; Ginger L. Milne; Christopher W. Hooper; Noah J. Ehinger; Stanley D. Poole; Naoko Brown; Steven R. Seidner; Donald C. McCurnin; Jeff Reese; Ronald I. Clyman

BackgroundAlthough studies involving preterm infants ≤34 weeks gestation report a decreased incidence of patent ductus arteriosus after antenatal betamethasone, studies involving younger gestation infants report conflicting results.MethodsWe used preterm baboons, mice, and humans (≤276/7 weeks gestation) to examine betamethasone’s effects on ductus gene expression and constriction both in vitro and in vivo.ResultsIn mice, betamethasone increased the sensitivity of the premature ductus to the contractile effects of oxygen without altering the effects of other contractile or vasodilatory stimuli. Betamethasone’s effects on oxygen sensitivity could be eliminated by inhibiting endogenous prostaglandin/nitric oxide signaling. In mice and baboons, betamethasone increased the expression of several developmentally regulated genes that mediate oxygen-induced constriction (K+ channels) and inhibit vasodilator signaling (phosphodiesterases). In human infants, betamethasone increased the rate of ductus constriction at all gestational ages. However, in infants born ≤256/7 weeks gestation, betamethasone’s contractile effects were only apparent when prostaglandin signaling was inhibited, whereas at 26–27 weeks gestation, betamethasone’s contractile effects were apparent even in the absence of prostaglandin inhibitors.ConclusionsWe speculate that betamethasone’s contractile effects may be mediated through genes that are developmentally regulated. This could explain why betamethasone’s effects vary according to the infant’s developmental age at birth.

Collaboration


Dive into the John T. Benjamin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David R. Kelly

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge