Riet van der Meer
Vanderbilt University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Riet van der Meer.
Cancer Cell | 2010
Hyun-Seok Kim; Krish Patel; Kristi Muldoon-Jacobs; Kheem S. Bisht; Nukhet Aykin-Burns; J. Daniel Pennington; Riet van der Meer; Phuongmai Nguyen; Jason E. Savage; Kjerstin M. Owens; Athanassios Vassilopoulos; Ozkan Ozden; Seong Hoon Park; Keshav K. Singh; Sarki A. Abdulkadir; Douglas R. Spitz; Chu-Xia Deng; David Gius
The sirtuin gene family (SIRT) is hypothesized to regulate the aging process and play a role in cellular repair. This work demonstrates that SIRT3(-/-) mouse embryonic fibroblasts (MEFs) exhibit abnormal mitochondrial physiology as well as increases in stress-induced superoxide levels and genomic instability. Expression of a single oncogene (Myc or Ras) in SIRT3(-/-) MEFs results in in vitro transformation and altered intracellular metabolism. Superoxide dismutase prevents transformation by a single oncogene in SIRT3(-/-) MEFs and reverses the tumor-permissive phenotype as well as stress-induced genomic instability. In addition, SIRT3(-/-) mice develop ER/PR-positive mammary tumors. Finally, human breast and other human cancer specimens exhibit reduced SIRT3 levels. These results identify SIRT3 as a genomically expressed, mitochondria-localized tumor suppressor.
Journal of Immunology | 2010
John T. Benjamin; Billy J. Carver; Erin J. Plosa; Yasutoshi Yamamoto; J. Davin Miller; Jin-Hua Liu; Riet van der Meer; Timothy S. Blackwell; Lawrence S. Prince
Bronchopulmonary dysplasia (BPD) is a frequent complication of preterm birth. This chronic lung disease results from arrested saccular airway development and is most common in infants exposed to inflammatory stimuli. In experimental models, inflammation inhibits expression of fibroblast growth factor-10 (FGF-10) and impairs epithelial–mesenchymal interactions during lung development; however, the mechanisms connecting inflammatory signaling with reduced growth factor expression are not yet understood. In this study we found that soluble inflammatory mediators present in tracheal fluid from preterm infants can prevent saccular airway branching. In addition, LPS treatment led to local production of mediators that inhibited airway branching and FGF-10 expression in LPS-resistant C.C3-Tlr4Lpsd/J fetal mouse lung explants. Both direct NF-κB activation and inflammatory cytokines (IL-1β and TNF-α) that activate NF-κB reduced FGF-10 expression, whereas chemokines that signal via other inflammatory pathways had no effect. Mutational analysis of the FGF-10 promoter failed to identify genetic elements required for direct NF-κB–mediated FGF-10 inhibition. Instead, NF-κB activation appeared to interfere with the normal stimulation of FGF-10 expression by Sp1. Chromatin immunoprecipitation and nuclear coimmunoprecipitation studies demonstrated that the RelA subunit of NF-κB and Sp1 physically interact at the FGF-10 promoter. These findings indicate that inflammatory signaling through NF-κB disrupts the normal expression of FGF-10 in fetal lung mesenchyme by interfering with the transcriptional machinery critical for lung morphogenesis.
Journal of Clinical Investigation | 2012
Philip D. Anderson; Sydika A. McKissic; Monica Logan; Meejeon Roh; Omar E. Franco; Jie Wang; Irina Doubinskaia; Riet van der Meer; Simon W. Hayward; Christine M. Eischen; Isam Eldin Eltoum; Sarki A. Abdulkadir
Cooperativity between oncogenic mutations is recognized as a fundamental feature of malignant transformation, and it may be mediated by synergistic regulation of the expression of pro- and antitumorigenic target genes. However, the mechanisms by which oncogenes and tumor suppressors coregulate downstream targets and pathways remain largely unknown. Here, we used ChIP coupled to massively parallel sequencing (ChIP-seq) and gene expression profiling in mouse prostates to identify direct targets of the tumor suppressor Nkx3.1. Further analysis indicated that a substantial fraction of Nkx3.1 target genes are also direct targets of the oncoprotein Myc. We also showed that Nkx3.1 and Myc bound to and crossregulated shared target genes in mouse and human prostate epithelial cells and that Nkx3.1 could oppose the transcriptional activity of Myc. Furthermore, loss of Nkx3.1 cooperated with concurrent overexpression of Myc to promote prostate cancer in transgenic mice. In human prostate cancer patients, dysregulation of shared NKX3.1/MYC target genes was associated with disease relapse. Our results indicate that NKX3.1 and MYC coregulate prostate tumorigenesis by converging on, and crossregulating, a common set of target genes. We propose that coregulation of target gene expression by oncogenic/tumor suppressor transcription factors may represent a general mechanism underlying the cooperativity of oncogenic mutations during tumorigenesis.
PLOS ONE | 2008
Meejeon Roh; Omar E. Franco; Simon W. Hayward; Riet van der Meer; Sarki A. Abdulkadir
Background Polyploidy is a prominent feature of many human cancers, and it has long been hypothesized that polyploidy may contribute to tumorigenesis by promoting genomic instability. In this study, we investigated whether polyploidy per se induced by a relevant oncogene can promote genomic instability and tumorigenicity in human epithelial cells. Principal Findings When the oncogenic serine-threonine kinase Pim-1 is overexpressed in immortalized, non-tumorigenic human prostate and mammary epithelial cells, these cells gradually converted to polyploidy and became tumorigenic. To assess the contribution of polyploidy to tumorigenicity, we obtained sorted, matched populations of diploid and polyploid cells expressing equivalent levels of the Pim-1 protein. Spectral karyotyping revealed evidence of emerging numerical and structural chromosomal abnormalities in polyploid cells, supporting the proposition that polyploidy promotes chromosomal instability. Polyploid cells displayed an intact p53/p21 pathway, indicating that the viability of polyploid cells in this system is not dependent on the inactivation of the p53 signaling pathway. Remarkably, only the sorted polyploid cells were tumorigenic in vitro and in vivo. Conclusions Our results support the notion that polyploidy can promote chromosomal instability and the initiation of tumorigenesis in human epithelial cells.
Journal of the National Cancer Institute | 2015
Austin N. Kirschner; Jie Wang; Riet van der Meer; Philip D. Anderson; Omar E. Franco-Coronel; Max H. Kushner; Joel H. Everett; Omar Hameed; Erika K. Keeton; Miika Ahdesmaki; Shaun Grosskurth; Dennis Huszar; Sarki A. Abdulkadir
BACKGROUND PIM1 kinase is coexpressed with c-MYC in human prostate cancers (PCs) and dramatically enhances c-MYC-induced tumorigenicity. Here we examine the effects of a novel oral PIM inhibitor, AZD1208, on prostate tumorigenesis and recurrence. METHODS A mouse c-MYC/Pim1-transduced tissue recombination PC model, Myc-CaP allografts, and human PC xenografts were treated with AZD1208 (n = 5-11 per group). Androgen-sensitive and castrate-resistant prostate cancer (CRPC) models were studied as well as the effects of hypoxia and radiation. RNA sequencing was used to analyze drug-induced gene expression changes. Results were analyzed with χ(2) test. Students t test and nonparametric Mann-Whitney rank sum U Test. All statistical tests were two-sided. RESULTS AZD1208 inhibited tumorigenesis in tissue recombinants, Myc-CaP, and human PC xenograft models. PIM inhibition decreased c-MYC/Pim1 graft growth by 54.3 ± 39% (P < .001), decreased cellular proliferation by 46 ± 14% (P = .016), and increased apoptosis by 326 ± 170% (P = .039). AZD1208 suppressed multiple protumorigenic pathways, including the MYC gene program. However, it also downregulated the p53 pathway. Hypoxia and radiation induced PIM1 in prostate cancer cells, and AZD1208 functioned as a radiation sensitizer. Recurrent tumors postcastration responded transiently to either AZD1208 or radiation treatment, and combination treatment resulted in more sustained inhibition of tumor growth. Cell lines established from recurrent, AZD1208-resistant tumors again revealed downregulation of the p53 pathway. Irradiated AZD1208-treated tumors robustly upregulated p53, providing a possible mechanistic explanation for the effectiveness of combination therapy. Finally, an AZD1208-resistant gene signature was found to be associated with biochemical recurrence in PC patients. CONCLUSIONS PIM inhibition is a potential treatment for MYC-driven prostate cancers including CRPC, and its effectiveness may be enhanced by activators of the p53 pathway, such as radiation.
Journal of Biological Chemistry | 2007
Ashish P. Mogal; Riet van der Meer; Philip S. Crooke; Sarki A. Abdulkadir
Transcription factor haploinsufficiency plays a role in the pathogenesis of many diseases, including cancer. In a mouse model of prostate tumor initiation, loss of a single allele of the tumor suppressor Nkx3.1 stochastically inactivates the expression of a class of dosage-sensitive target genes. Here we show that dosage sensitivity is associated with the differential histone H3/H4 acetylation states of Nkx3.1 target genes. When histone acetylation is induced in Nkx3.1+/- mouse prostates with the histone deacetylase inhibitor Trichostatin A, Nkx3.1 can bind to and reactivate the expression of dosage-sensitive target genes. We incorporated our findings into a mathematical model that entails the association of Nkx3.1 with histone acetyltransferase activity. Subsequent experiments indicate that Nkx3.1 associates with and recruits the histone acetyltransferase p300/CREB-binding protein-associated factor to chromatin. Finally, we demonstrate a role for the dosage-sensitive target gene intelectin/omentin in suppressing prostate tumorigenicity. Our results reveal how the interplay between transcription factor dosage and chromatin affects target gene expression in tumor initiation.
Journal of Cellular Physiology | 2012
Meejeon Roh; Riet van der Meer; Sarki A. Abdulkadir
Polyploidy has been linked to tumorigenicity mainly due to the chromosomal aberrations. Elevated reactive oxygen species (ROS) generation, on the other hand, has also been associated with oncogenic transformation in most cancer cells. However, a possible link between ploidy and ROS is largely unexplored. Here we have examined the role of ROS in the tumorigenicity of polyploid cells. We show that polyploid prostate and mammary epithelial cells contain higher levels of ROS due to their higher mitochondrial contents. ROS levels and mitochondrial mass are also higher in dihydrocytochalasin B (DCB)‐induced polyploid cells, suggesting that higher levels of ROS observed in polyploid cell can occur due to cytokinesis failure. Interestingly, polyploid cells were more sensitive to the inhibitory effect of the antioxidant, N‐Acetyl‐L‐cysteine (NAC), than control diploid cells. Treatment of polyploid/diploid cells with NAC led to the selective elimination of polyploid cells over time and abrogated the tumorigenicity of polyploid cells. This effect was partially mediated via the Akt signaling pathway. We next explored a possible role for ROS in promoting chromosomal instability by analyzing the effects of ROS on the mitotic stage of the cell cycle. Enhancing ROS levels by treating cells with hydrogen peroxide delayed not only entry into and but also exit from mitosis. Furthermore, increasing ROS levels significantly increased taxol resistance. Our results indicated that increased ROS in polyploid cells can contribute to tumorigenicity and highlight the therapeutic potential of antioxidants by selectively targeting the tumorigenic polyploid cells and by reversing taxol resistance. J. Cell. Physiol. 227: 801–812, 2012.
Development | 2014
Erin J. Plosa; Lisa R. Young; Peter M. Gulleman; Vasiliy V. Polosukhin; Rinat Zaynagetdinov; John T. Benjamin; Amanda M. Im; Riet van der Meer; Linda A. Gleaves; Nada Bulus; Wei Han; Lawrence S. Prince; Timothy S. Blackwell; Roy Zent
Integrin-dependent interactions between cells and extracellular matrix regulate lung development; however, specific roles for β1-containing integrins in individual cell types, including epithelial cells, remain incompletely understood. In this study, the functional importance of β1 integrin in lung epithelium during mouse lung development was investigated by deleting the integrin from E10.5 onwards using surfactant protein C promoter-driven Cre. These mutant mice appeared normal at birth but failed to gain weight appropriately and died by 4 months of age with severe hypoxemia. Defects in airway branching morphogenesis in association with impaired epithelial cell adhesion and migration, as well as alveolarization defects and persistent macrophage-mediated inflammation were identified. Using an inducible system to delete β1 integrin after completion of airway branching, we showed that alveolarization defects, characterized by disrupted secondary septation, abnormal alveolar epithelial cell differentiation, excessive collagen I and elastin deposition, and hypercellularity of the mesenchyme occurred independently of airway branching defects. By depleting macrophages using liposomal clodronate, we found that alveolarization defects were secondary to persistent alveolar inflammation. β1 integrin-deficient alveolar epithelial cells produced excessive monocyte chemoattractant protein 1 and reactive oxygen species, suggesting a direct role for β1 integrin in regulating alveolar homeostasis. Taken together, these studies define distinct functions of epithelial β1 integrin during both early and late lung development that affect airway branching morphogenesis, epithelial cell differentiation, alveolar septation and regulation of alveolar homeostasis.
Clinical Cancer Research | 2014
Riet van der Meer; Ha Yong Song; Seong Hoon Park; Sarki A. Abdulkadir; Meejeon Roh
Purpose: To identify genes whose depletion is detrimental to Pim1-overexpressing prostate cancer cells and to validate this finding in vitro and in vivo. Experimental Design: RNAi screening was used to identify genes whose depletion is detrimental to Pim1-overexpressing cells. Our finding was validated using shRNA or PLK1-specific inhibitor BI 2536. Xenograft studies were performed using both PLK1-knockdown cells and BI 2536 to investigate the effects of PLK1 inhibition on tumorigenesis in Pim1-overexpressing cells. Finally, PLK1 and PIM1 expression patterns in human prostate tumors were examined by immunohistochemistry using tissue microarrays. Results: We identified the mitotic regulator polo-like kinase (PLK1) as a gene whose depletion is particularly detrimental to the viability of Pim1-overexpressing prostate cancer. Inhibition of PLK1 by shRNA or BI 2536 in Pim1-overexpressing prostate cancer xenograft models resulted in a dramatic inhibition of tumor progression. Notably, Pim1-overexpressing cells were more prone to mitotic arrest followed by apoptosis due to PLK1 inhibition than control cells. Furthermore, inhibition of PLK1 led to the reduction of MYC protein levels both in vitro and in vivo. Our data also suggest that PIM1 and PLK1 physically interact and PIM1 might phosphorylate PLK1. Finally, PLK1 and PIM1 are frequently co-expressed in human prostate tumors, and co-expression of PLK1 and PIM1 was significantly correlated to higher Gleason grades. Conclusions: Our findings demonstrate that PIM1-overexpressing cancer cells are particularly sensitive to PLK1 inhibition, suggesting that PIM1 might be used as a marker for identifying patients who will benefit from PLK1 inhibitor treatment. Clin Cancer Res; 20(12); 3211–21. ©2014 AACR.
American Journal of Pathology | 2016
John T. Benjamin; Riet van der Meer; Amanda M. Im; Erin J. Plosa; Rinat Zaynagetdinov; Ankita Burman; Madeline E. Havrilla; Linda A. Gleaves; Vasiliy V. Polosukhin; Gail H. Deutsch; Hiromi Yanagisawa; Jeffrey M. Davidson; Lawrence S. Prince; Lisa R. Young; Timothy S. Blackwell
The highly orchestrated interactions between the epithelium and mesenchyme required for normal lung development can be disrupted by perinatal inflammation in preterm infants, although the mechanisms are incompletely understood. We used transgenic (inhibitory κB kinase β transactivated) mice that conditionally express an activator of the NF-κB pathway in airway epithelium to investigate the impact of epithelial-derived inflammation during lung development. Epithelial NF-κB activation selectively impaired saccular stage lung development, with a phenotype comprising rapidly progressive distal airspace dilation, impaired gas exchange, and perinatal lethality. Epithelial-derived inflammation resulted in disrupted elastic fiber organization and down-regulation of elastin assembly components, including fibulins 4 and 5, lysyl oxidase like-1, and fibrillin-1. Fibulin-5 expression by saccular stage lung fibroblasts was consistently inhibited by treatment with bronchoalveolar lavage fluid from inhibitory κB kinase β transactivated mice, Escherichia coli lipopolysaccharide, or tracheal aspirates from preterm infants exposed to chorioamnionitis. Expression of a dominant NF-κB inhibitor in fibroblasts restored fibulin-5 expression after lipopolysaccharide treatment, whereas reconstitution of fibulin-5 rescued extracellular elastin assembly by saccular stage lung fibroblasts. Elastin organization was disrupted in saccular stage lungs of preterm infants exposed to systemic inflammation. Our study reveals a critical window for elastin assembly during the saccular stage that is disrupted by inflammatory signaling and could be amenable to interventions that restore elastic fiber assembly in the developing lung.