Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John Tam is active.

Publication


Featured researches published by John Tam.


Nature Cell Biology | 2002

Recruitment and activation of caspase-8 by the Huntingtin-interacting protein Hip-1 and a novel partner Hippi

François G. Gervais; Roshni Singaraja; Steven Xanthoudakis; Claire-Anne Gutekunst; Blair R. Leavitt; Martina Metzler; Abigail S. Hackam; John Tam; John P. Vaillancourt; Vicky M. Houtzager; Dita M. Rasper; Sophie Roy; Michael R. Hayden; Donald W. Nicholson

In Huntington disease, polyglutamine expansion of the protein huntingtin (Htt) leads to selective neurodegenerative loss of medium spiny neurons throughout the striatum by an unknown apoptotic mechanism. Binding of Hip-1, a protein normally associated with Htt, is reduced by polyglutamine expansion. Free Hip-1 binds to a hitherto unknown polypeptide, Hippi (Hip-1 protein interactor), which has partial sequence homology to Hip-1 and similar tissue and subcellular distribution. The availability of free Hip-1 is modulated by polyglutamine length within Htt, with disease-associated polyglutamine expansion favouring the formation of pro-apoptotic Hippi–Hip-1 heterodimers. This heterodimer can recruit procaspase-8 into a complex of Hippi, Hip-1 and procaspase-8, and launch apoptosis through components of the extrinsic cell-death pathway. We propose that Htt polyglutamine expansion liberates Hip-1 so that it can form a caspase-8 recruitment complex with Hippi. This novel non-receptor-mediated pathway for activating caspase-8 might contribute to neuronal death in Huntington disease.


Journal of Biological Chemistry | 2002

Selective, reversible caspase-3 inhibitor is neuroprotective and reveals distinct pathways of cell death after neonatal hypoxic-ischemic brain injury

Byung Hee Han; Daigen Xu; Junjeong Choi; Yongxin Han; Steven Xanthoudakis; Sophie Roy; John Tam; John Vaillancourt; John Colucci; Robert Siman; Andre Giroux; George S. Robertson; Robert Zamboni; Donald W. Nicholson; David M. Holtzman

Hypoxia-ischemia (H-I) in the developing brain results in brain injury with prominent features of both apoptosis and necrosis. A peptide-based pan-caspase inhibitor is neuroprotective against neonatal H-I brain injury, suggesting a central role of caspases in brain injury. Because previously studied peptide-based caspase inhibitors are not potent and are only partially selective, the exact contribution of specific caspases and other proteases to injury after H-I is not clear. In this study, we explored the neuroprotective effects of a small, reversible caspase-3 inhibitor M826. M826 selectively and potently inhibited both caspase-3 enzymatic activity and apoptosis in cultured cells in vitro. In a rat model of neonatal H-I, M826 blocked caspase-3 activation and cleavage of its substrates, which begins 6 h and peaks 24 h after H-I. Although M826 significantly reduced DNA fragmentation and brain tissue loss, it did not prevent calpain activation in the cortex. This activation, which is associated with excitotoxic/necrotic cell injury, occurred within 30 min to 2 h after H-I even in the presence of M826. Similar to calpain activation, we found evidence of caspase-2 processing within 30 min to 2 h after H-I that was not affected by M826. Caspase-2 processing appeared to be secondary to calpain-mediated cleavage and was not associated with caspase-2 activation. These data suggest that caspase-3 specifically contributes to delayed cell death and brain injury after neonatal H-I and that calpain activation is associated with and likely a marker for the early component of excitotoxic/necrotic brain injury previously demonstrated in this model.


Neuroscience | 2002

Immunohistochemical and biochemical assessment of caspase-3 activation and DNA fragmentation following transient focal ischemia in the rat

Maria Antonietta Davoli; Jimmy Fourtounis; John Tam; Steven Xanthoudakis; Donald W. Nicholson; George S. Robertson; Gordon Y. K. Ng; Daigen Xu

In the present study, we evaluated the time-course of caspase-3 activation, and the evolution of cell death following focal cerebral ischemia produced by transient middle cerebral artery occlusion in rats. Ischemia-induced active caspase-3 immunoreactivity in the striatum but not the cortex at 3 and 6 h time points post-reperfusion. Furthermore, using a novel approach to visualize enzymatic activity, deltaC-APP, a C-terminal cleavage product of APP generated by caspase-3, was found to immunolocalize to the same areas as active caspase-3. Double-labeling studies demonstrated co-localization of these two proteins at the cellular level. Further double-labeling experiments revealed that active caspase-3 was confined to neuronal cells which were still viable and thus immunoreactive for NeuN. DNA fragmentation, assessed histologically by terminal dUTP nick-end labeling (TUNEL), was observed in a small number of cells in the striatum as early as 3 h, but only began to appear in the cortex by 6 h. DNA fragmentation was progressive, and by 24 h post-reperfusion, large portions of both the striatum and cortex showed TUNEL positive cells. However, double-labeling of active caspase-3 with TUNEL showed only minimal co-localization at all time-points. Thus, caspase-3 activation is an event that appears to occur prior to DNA fragmentation. As a confirmation of the histological TUNEL data, 24 h ischemia also induced the generation of nucleosome fragments, evidenced by cell death enzyme-linked immunosorbent assay. Using a novel ischemia-induced substrate cleavage biochemical approach, spectrin P120 fragment, a caspase-specific cleavage product of alpha II spectrin, a cytoskeletal protein, was shown to be elevated by western blotting. Brain concentrations of both nucleosomes and spectrin P120 correlate with the degree of injury previously assessed by triphenyltetrazolium chloride staining and infarct volume calculation. Together, our findings suggest a possible association between caspase-3 activation and ischemic cell death following middle cerebral artery occlusion brain injury.


Journal of Experimental Medicine | 2004

Differential efficacy of caspase inhibitors on apoptosis markers during sepsis in rats and implication for fractional inhibition requirements for therapeutics

Nathalie Méthot; JingQi Huang; Nathalie Coulombe; John P. Vaillancourt; Dita M. Rasper; John Tam; Yongxin Han; John Colucci; Robert Zamboni; Steven Xanthoudakis; Sylvie Toulmond; Donald W. Nicholson; Sophie Roy

A rodent model of sepsis was used to establish the relationship between caspase inhibition and inhibition of apoptotic cell death in vivo. In this model, thymocyte cell death was blocked by Bcl-2 transgene, indicating that apoptosis was predominantly dependent on the mitochondrial pathway that culminates in caspase-3 activation. Caspase inhibitors, including the selective caspase-3 inhibitor M867, were able to block apoptotic manifestations both in vitro and in vivo but with strikingly different efficacy for different cell death markers. Inhibition of DNA fragmentation required substantially higher levels of caspase-3 attenuation than that required for blockade of other apoptotic events such as spectrin proteolysis and phosphatidylserine externalization. These data indicate a direct relationship between caspase inhibition and some apoptotic manifestations but that small quantities of uninhibited caspase-3 suffice to initiate genomic DNA breakdown, presumably through the escape of catalytic quantities of caspase-activated DNase. These findings suggest that putative caspase-independent apoptosis may be overestimated in some systems since blockade of spectrin proteolysis and other cell death markers does not accurately reflect the high degrees of caspase-3 inhibition needed to prevent DNA fragmentation. Furthermore, this requirement presents substantial therapeutic challenges owing to the need for persistent and complete caspase blockade.


Immunity | 2016

A High-Dimensional Atlas of Human T Cell Diversity Reveals Tissue-Specific Trafficking and Cytokine Signatures

Michael Thomas Wong; David Eng Hui Ong; Frances Sheau Huei Lim; Karen Wei Weng Teng; Naomi McGovern; Sriram Narayanan; Wen Qi Ho; Daniela Cerny; Henry Kun Kiaang Tan; Rosslyn Anicete; Bien Keem Tan; Tony Kiat Hon Lim; Chung Yip Chan; Peng Chung Cheow; Ser Yee Lee; Angela Takano; Eng-Huat Tan; John Tam; Ern Yu Tan; Jerry Kok Yen Chan; Katja Fink; Antonio Bertoletti; Florent Ginhoux; Maria A. Curotto de Lafaille; Evan W. Newell

Depending on the tissue microenvironment, Txa0cells can differentiate into highly diverse subsets expressing unique trafficking receptors and cytokines. Studies of human lymphocytes have primarily focused on a limited number of parameters in blood, representing an incomplete view of the human immune system. Here, we have utilized mass cytometry to simultaneously analyze Txa0cell trafficking and functional markers across eight different human tissues, including blood, lymphoid, and non-lymphoid tissues. These data have revealed that combinatorial expression of trafficking receptors and cytokines better defines tissue specificity. Notably, we identified numerous T helper cell subsets with overlapping cytokine expression, but only specific cytokine combinations are secreted regardless of tissue type. This indicates that Txa0cell lineages defined in mouse models cannot be clearly distinguished in humans. Overall, our data uncover a plethora of tissue immune signatures and provide a systemic map of how Txa0cell phenotypes are altered throughout the human body.


British Journal of Pharmacology | 2004

Neuroprotective effects of M826, a reversible caspase-3 inhibitor, in the rat malonate model of Huntington's disease

Sylvie Toulmond; Keith Tang; Yves Bureau; Helen Ashdown; Sarah Degen; Ruth O'Donnell; John Tam; Yongxin Han; John Colucci; André Giroux; Yanxia Zhu; Mathieu Boucher; Bill Pikounis; Steven Xanthoudakis; Sophie Roy; Michael Rigby; Robert Zamboni; George S. Robertson; Gordon Y. K. Ng; Donald W. Nicholson; Jean-Pierre Flückiger

Caspases, key enzymes in the apoptosis pathway, have been detected in the brain of HD patients and in animal models of the disease. In the present study, we investigated the neuroprotective properties of a new, reversible, caspase‐3‐specific inhibitor, M826 (3‐({(2S)‐2‐[5‐tert‐butyl‐3‐{[(4‐methyl‐1,2,5‐oxadiazol‐3‐yl)methyl]amino}‐2‐oxopyrazin‐1(2H)‐yl]butanoyl}amino)‐5‐[hexyl(methyl)amino]‐4‐oxopentanoic acid), in a rat malonate model of HD. Pharmacokinetic and autoradiography studies after intrastriatal (i.str.) injection of 1.5 nmol of M826 or its tritiated analogue [3H]M826 indicated that the compound diffused within the entire striatum. The elimination half‐life (T1/2) of M826 in the rat striatum was 3 h. I.str. injection of 1.5 nmol of M826 10 min after malonate infusion induced a significant reduction (66%) in the number of neurones expressing active caspase‐3 in the ipsilateral striatum. Inhibition of active caspase‐3 translated into a significant but moderate reduction (39%) of the lesion volume, and of cell death (24%), 24 h after injury. The efficacy of M826 at inhibiting cell death was comparable to that of the noncompetitive NMDA receptor antagonist MK801. These data provide in vivo proof‐of‐concept of the neuroprotective effects of reversible caspase‐3 inhibitors in a model of malonate‐induced striatal injury in the adult rat.


Antimicrobial Agents and Chemotherapy | 2012

Broadening the spectrum of β-lactam antibiotics through inhibition of signal peptidase type I

Alex G. Therien; Joann Huber; Kenneth E. Wilson; Patrick Beaulieu; Alexandre Caron; David Claveau; Kathleen Deschamps; Robert G. K. Donald; Andrew Galgoci; Michel Gallant; Xin Gu; Nancy J. Kevin; Josiane Lafleur; Penny S. Leavitt; Christian Lebeau-Jacob; Suzy Lee; Molly M. Lin; Anna A. Michels; Aimie M. Ogawa; Ronald E. Painter; Craig A. Parish; Young-Whan Park; Liliana L. Benton-Perdomo; Mihai Petcu; John W. Phillips; Mary Ann Powles; Kathryn Skorey; John Tam; Christopher M. Tan; Katherine Young

ABSTRACT The resistance of methicillin-resistant Staphylococcus aureus (MRSA) to all β-lactam classes limits treatment options for serious infections involving this organism. Our goal is to discover new agents that restore the activity of β-lactams against MRSA, an approach that has led to the discovery of two classes of natural product antibiotics, a cyclic depsipeptide (krisynomycin) and a lipoglycopeptide (actinocarbasin), which potentiate the activity of imipenem against MRSA strain COL. We report here that these imipenem synergists are inhibitors of the bacterial type I signal peptidase SpsB, a serine protease that is required for the secretion of proteins that are exported through the Sec and Tat systems. A synthetic derivative of actinocarbasin, M131, synergized with imipenem both in vitro and in vivo with potent efficacy. The in vitro activity of M131 extends to clinical isolates of MRSA but not to a methicillin-sensitive strain. Synergy is restricted to β-lactam antibiotics and is not observed with other antibiotic classes. We propose that the SpsB inhibitors synergize with β-lactams by preventing the signal peptidase-mediated secretion of proteins required for β-lactam resistance. Combinations of SpsB inhibitors and β-lactams may expand the utility of these widely prescribed antibiotics to treat MRSA infections, analogous to β-lactamase inhibitors which restored the utility of this antibiotic class for the treatment of resistant Gram-negative infections.


Chemistry & Biology | 2015

Small Molecule Inhibitors of Clostridium difficile Toxin B-Induced Cellular Damage

John Tam; Greg L. Beilhartz; Anick Auger; Pulkit Gupta; Alex G. Therien; Roman A. Melnyk

Clostridium difficile causes life-threatening diarrhea through the actions of its homologous toxins TcdA and TcdB on human colonocytes. Therapeutic agents that block toxin-induced damage are urgently needed to prevent the harmful consequences of toxin action that are not addressed with current antibiotic-based treatments. Here, we developed an imaging-based phenotypic screen to identify small molecules that protected human cells from TcdB-induced cell rounding. A series of structurally diverse compounds with antitoxin activity were identified and found to act through one of a small subset of mechanisms, including direct binding and sequestration of TcdB, inhibition of endosomal maturation, and noncompetitive inhibition of the toxin glucosyltransferase activity. Distinct classes of inhibitors were used further to dissect the determinants of the toxin-mediated necrosis phenotype occurring at higher doses of toxin. These findings validate and inform novel targeting strategies for discovering small molecule agents to treat C.xa0difficile infection.


Science Advances | 2016

Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent Pseudomonas aeruginosa biofilms

Perrin Baker; Preston J. Hill; Brendan D. Snarr; Noor Alnabelseya; Matthew J. Pestrak; Mark J. Lee; Laura K. Jennings; John Tam; Roman A. Melnyk; Matthew R. Parsek; Donald C. Sheppard; Daniel J. Wozniak; P. Lynne Howell

Therapeutic enzyme treatment disrupts Pseudomonas biofilms, potentiating antibiotics and ameliorating the innate immune system. Bacterial biofilms present a significant medical challenge because they are recalcitrant to current therapeutic regimes. A key component of biofilm formation in the opportunistic human pathogen Pseudomonas aeruginosa is the biosynthesis of the exopolysaccharides Pel and Psl, which are involved in the formation and maintenance of the structural biofilm scaffold and protection against antimicrobials and host defenses. Given that the glycoside hydrolases PelAh and PslGh encoded in the pel and psl biosynthetic operons, respectively, are utilized for in vivo exopolysaccharide processing, we reasoned that these would provide specificity to target P. aeruginosa biofilms. Evaluating these enzymes as potential therapeutics, we demonstrate that these glycoside hydrolases selectively target and degrade the exopolysaccharide component of the biofilm matrix. PelAh and PslGh inhibit biofilm formation over a 24-hour period with a half maximal effective concentration (EC50) of 69.3 ± 1.2 and 4.1 ± 1.1 nM, respectively, and are capable of disrupting preexisting biofilms in 1 hour with EC50 of 35.7 ± 1.1 and 12.9 ± 1.1 nM, respectively. This treatment was effective against clinical and environmental P. aeruginosa isolates and reduced biofilm biomass by 58 to 94%. These noncytotoxic enzymes potentiated antibiotics because the addition of either enzyme to a sublethal concentration of colistin reduced viable bacterial counts by 2.5 orders of magnitude when used either prophylactically or on established 24-hour biofilms. In addition, PelAh was able to increase neutrophil killing by ~50%. This work illustrates the feasibility and benefits of using bacterial exopolysaccharide biosynthetic glycoside hydrolases to develop novel antibiofilm therapeutics.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Translocation domain mutations affecting cellular toxicity identify the Clostridium difficile toxin B pore

Zhifen Zhang; Minyoung Park; John Tam; Anick Auger; Greg L. Beilhartz; D. Borden Lacy; Roman A. Melnyk

Significance Clostridium difficile is the leading cause of antibiotic-associated infection in hospitals worldwide. Disease symptoms are caused by toxins A and B, which form membrane-spanning pores that deliver associated cytotoxic enzyme domains into target cells leading to cellular death and tissue damage. Despite a wealth of information for the enzymatic domains that act once inside the cell, very little is known about the translocation pore and its role in disease pathogenesis. Here we describe the structural features of the pore and identify mutants that prevent pore formation and show that they are no longer toxic to host cells. These findings offer a glimpse into the elusive translocation pore and further provide the basis for a unique strategy to target toxins therapeutically. Disease associated with Clostridium difficile infection is caused by the actions of the homologous toxins TcdA and TcdB on colonic epithelial cells. Binding to target cells triggers toxin internalization into acidified vesicles, whereupon cryptic segments from within the 1,050-aa translocation domain unfurl and insert into the bounding membrane, creating a transmembrane passageway to the cytosol. Our current understanding of the mechanisms underlying pore formation and the subsequent translocation of the upstream cytotoxic domain to the cytosol is limited by the lack of information available regarding the identity and architecture of the transmembrane pore. Here, through systematic perturbation of conserved sites within predicted membrane-insertion elements of the translocation domain, we uncovered highly sensitive residues—clustered between amino acids 1,035 and 1,107—that when individually mutated, reduced cellular toxicity by as much as >1,000-fold. We demonstrate that defective variants are defined by impaired pore formation in planar lipid bilayers and biological membranes, resulting in an inability to intoxicate cells through either apoptotic or necrotic pathways. These findings along with the unexpected similarities uncovered between the pore-forming “hotspots” of TcdB and the well-characterized α-helical diphtheria toxin translocation domain provide insights into the structure and mechanism of formation of the translocation pore for this important class of pathogenic toxins.

Collaboration


Dive into the John Tam's collaboration.

Researchain Logo
Decentralizing Knowledge