John V. Kilmartin
Laboratory of Molecular Biology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John V. Kilmartin.
Journal of Cell Biology | 2002
Jennifer G. DeLuca; Ben Moree; Jennifer M. Hickey; John V. Kilmartin; E. D. Salmon
Identification of proteins that couple kinetochores to spindle microtubules is critical for understanding how accurate chromosome segregation is achieved in mitosis. Here we show that the protein hNuf2 specifically functions at kinetochores for stable microtubule attachment in HeLa cells. When hNuf2 is depleted by RNA interference, spindle formation occurs normally as cells enter mitosis, but kinetochores fail to form their attachments to spindle microtubules and cells block in prometaphase with an active spindle checkpoint. Kinetochores depleted of hNuf2 retain the microtubule motors CENP-E and cytoplasmic dynein, proteins previously implicated in recruiting kinetochore microtubules. Kinetochores also retain detectable levels of the spindle checkpoint proteins Mad2 and BubR1, as expected for activation of the spindle checkpoint by unattached kinetochores. In addition, the cell cycle block produced by hNuf2 depletion induces mitotic cells to undergo cell death. These data highlight a specific role for hNuf2 in kinetochore–microtubule attachment and suggest that hNuf2 is part of a molecular linker between the kinetochore attachment site and tubulin subunits within the lattice of attached plus ends.
Cell | 1997
Esther Bullitt; Michael P. Rout; John V. Kilmartin; Christopher W. Akey
The spindle pole body (SPB) is the microtubule organizing center (MTOC) in the yeast Saccharomyces that plays a pivotal role in such diverse processes as mitosis, budding, and mating. We have used cryoelectron microscopy and image processing to study the structure of isolated diploid SPBs. We show that SPBs are present in two lateral-size classes, sharing a similar vertical architecture comprised of six major layers. Tomographic reconstructions of heparin-stripped SPBs reveal a central hexagonally packed layer. Overexpression of Spc42p results in the growth of a similar layer, forming a crystal that encircles the SPB. Hence, the SPB is an MTOC that utilizes crystallographic packing of subunits in its construction.
Journal of Biological Chemistry | 2005
Claudio Ciferri; Jennifer G. De Luca; Silvia Monzani; Karin Johanna Ferrari; Dejan Ristic; Claire Wyman; Holger Stark; John V. Kilmartin; E. D. Salmon; Andrea Musacchio
The Ndc80 complex is a constituent of the outer plate of the kinetochore and plays a critical role in establishing the stable kinetochore-microtubule interactions required for chromosome segregation in mitosis. The Ndc80 complex is evolutionarily conserved and contains the four subunits Spc24, Spc25, Nuf2, and Ndc80 (whose human homologue is called Hec1). All four subunits are predicted to contain globular domains and extensive coiled coil regions. To gain an insight into the organization of the human Ndc80 complex, we reconstituted it using recombinant methods. The hydrodynamic properties of the recombinant Ndc80 complex are identical to those of the endogenous HeLa cell complex and are consistent with a 1:1:1:1 stoichiometry of the four subunits and a very elongated shape. Two tight Hec1-Nuf2 and Spc24-Spc25 subcomplexes, each stabilized by a parallel heterodimeric coiled coil, maintain this organization. These subcomplexes tetramerize via an interaction of the C- and N-terminal portions of the Hec1-Nuf2 and Spc24-Spc25 coiled coils, respectively. The recombinant complex displays normal kinetochore localization upon injection in HeLa cells and is therefore a faithful copy of the endogenous Ndc80 complex.
Journal of Cell Biology | 2003
John V. Kilmartin
Centrins are calmodulin-like proteins present in microtubule-organizing centers. The Saccharomyces cerevisiae centrin, Cdc31p, was functionally tagged with a single Z domain of protein A, and used in pull-down experiments to isolate Cdc31p-binding proteins. One of these, Sfi1p, localizes to the half-bridge of the spindle pole body (SPB), where Cdc31p is also localized. Temperature-sensitive mutants in SFI1 show a defect in SPB duplication and genetic interactions with cdc31-1. Sfi1p contains multiple internal repeats that are also present in a Schizosaccharomyces pombe protein, which also localizes to the SPB, and in several human proteins, one of which localizes close to the centriole region. Cdc31p binds directly to individual Sfi1 repeats in a 1:1 ratio, so a single molecule of Sfi1p binds multiple molecules of Cdc31p. The centrosomal human protein containing Sfi1 repeats also binds centrin in the repeat region, showing that this centrin-binding motif is conserved.
Trends in Cell Biology | 2000
Ian R. Adams; John V. Kilmartin
The yeast spindle pole body (SPB) is the functional equivalent of the centrosome and forms the two poles of the mitotic spindle. Before mitosis, both SPBs and centrosomes are present as single copies and must be duplicated to form the bipolar spindle. SPB components have been identified using a combination of biochemistry and genetics, and their role during SPB duplication has been analysed using temperature-sensitive mutants. In this article, we describe structural aspects of SPB duplication and their possible relationship to centrosome duplication.
Journal of Cell Biology | 2006
Sam Li; Alan M. Sandercock; Paul T. Conduit; Carol V. Robinson; Roger Williams; John V. Kilmartin
Centrins are calmodulin-like proteins present in centrosomes and yeast spindle pole bodies (SPBs) and have essential functions in their duplication. The Saccharomyces cerevisiae centrin, Cdc31p, binds Sfi1p on multiple conserved repeats; both proteins localize to the SPB half-bridge, where the new SPB is assembled. The crystal structures of Sfi1p–centrin complexes containing several repeats show Sfi1p as an α helix with centrins wrapped around each repeat and similar centrin–centrin contacts between each repeat. Electron microscopy (EM) shadowing of an Sfi1p–centrin complex with 15 Sfi1 repeats and 15 centrins bound showed filaments 60 nm long, compatible with all the Sfi1 repeats as a continuous α helix. Immuno-EM localization of the Sfi1p N and C termini showed Sfi1p–centrin filaments spanning the length of the half-bridge with the Sfi1p N terminus at the SPB. This suggests a model for SPB duplication where the half-bridge doubles in length by association of the Sfi1p C termini, thereby providing a new Sfi1p N terminus to initiate SPB assembly.
Journal of Cell Biology | 2010
Alexis R. Barr; John V. Kilmartin; Fanni Gergely
Two domains of centrosomal protein CDK5RAP2, CNN1 and CNN2, link centrosomes to mitotic spindle poles. CNN1 lacking centrosomes are unable to recruit pericentriolar matrix components that mediate attachment to spindle poles.
Journal of Cell Biology | 2013
Joo-Hee Sir; Monika Pütz; Owen M. Daly; Ciaran G. Morrison; Mark Dunning; John V. Kilmartin; Fanni Gergely
Centrosomes establish a mitotic spindle geometry that facilitates correct kinetochore–microtubule attachments, contributing to the fidelity of chromosome segregation.
Current Opinion in Cell Biology | 1994
John V. Kilmartin
The past year saw the molecular characterization of components of the Saccharomyces cerevisiae kinetochore and spindle pole body. In Schizosaccharomyces pombe, new cytological methods have been described for detection of centromeric DNA by light microscopy and probable kinetochores by electron microscopy.
Philosophical Transactions of the Royal Society B | 2014
John V. Kilmartin
The yeast spindle pole body (SPB) is the functional equivalent of the centrosome. Most SPB components have been identified and their functions partly established. This involved a large variety of techniques which are described here, and the potential use of some of these in the centrosome field is highlighted. In particular, very useful structural information on the SPB was obtained from a reconstituted complex, the γ-tubulin complex, and also from a sub-particle, SPB cores, prepared by extraction of an enriched SPB preparation. The labelling of SPB proteins with GFP at the N or C termini, using GFP tags inserted into the genome, gave informative electron microscopy localization and fluorescence resonance energy transfer data. Examples are given of more precise functional data obtained by removing domains from one SPB protein, Spc110p, without affecting its essential function. Finally, a structural model for SPB duplication is described and the differences between SPB and centrosome duplication discussed.