Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John W. Ellingboe is active.

Publication


Featured researches published by John W. Ellingboe.


Cancer Research | 2009

Biochemical, Cellular, and In vivo Activity of Novel ATP-Competitive and Selective Inhibitors of the Mammalian Target of Rapamycin

Ker Yu; Lourdes Toral-Barza; Celine Shi; Weiguo Zhang; Judy Lucas; Boris Shor; Jamie Kim; Jeroen C. Verheijen; Kevin J. Curran; David Malwitz; Derek Cecil Cole; John W. Ellingboe; Semiramis Ayral-Kaloustian; Tarek S. Mansour; James Joseph Gibbons; Robert T. Abraham; Pawel Wojciech Nowak; Arie Zask

The mammalian target of rapamycin (mTOR) is centrally involved in cell growth, metabolism, and angiogenesis. While showing clinical efficacy in a subset of tumors, rapamycin and rapalogs are specific and allosteric inhibitors of mTOR complex 1 (mTORC1), but they do not directly inhibit mTOR complex 2 (mTORC2), an emerging player in cancer. Here, we report chemical structure and biological characterization of three pyrazolopyrimidine ATP-competitive mTOR inhibitors, WAY-600, WYE-687, and WYE-354 (IC(50), 5-9 nmol/L), with significant selectivity over phosphatidylinositol 3-kinase (PI3K) isofoms (>100-fold). Unlike the rapalogs, these inhibitors acutely blocked substrate phosphorylation by mTORC1 and mTORC2 in vitro and in cells in response to growth factor, amino acids, and hyperactive PI3K/AKT. Unlike the inhibitors of PI3K or dual-pan PI3K/mTOR, cellular inhibition of P-S6K1(T389) and P-AKT(S473) by the pyrazolopyrimidines occurred at significantly lower inhibitor concentrations than those of P-AKT(T308) (PI3K-PDK1 readout), showing mTOR selectivity in cellular setting. mTOR kinase inhibitors reduced AKT downstream function and inhibited proliferation of diverse cancer cell lines. These effects correlated with a strong G(1) cell cycle arrest in both the rapamycin-sensitive and rapamycin-resistant cells, selective induction of apoptosis, repression of global protein synthesis, and down-regulation of angiogenic factors. When injected into tumor-bearing mice, WYE-354 inhibited mTORC1 and mTORC2 and displayed robust antitumor activity in PTEN-null tumors. Together, our results highlight mechanistic differentiation between rapalogs and mTOR kinase inhibitors in targeting cancer cell growth and survival and provide support for clinical development of mTOR kinase inhibitors as new cancer therapy.


Journal of Medicinal Chemistry | 2008

Discovery of Begacestat, a Notch-1-Sparing γ-Secretase Inhibitor for the Treatment of Alzheimer's Disease

Scott Christian Mayer; Anthony F. Kreft; Boyd L. Harrison; Magid Abou-Gharbia; Madelene Antane; Suzan Aschmies; Kevin Atchison; Michael Chlenov; Derek Cecil Cole; Thomas A. Comery; George Diamantidis; John W. Ellingboe; Kristi Fan; Rocco John Galante; Cathleen Gonzales; Douglas M. Ho; Molly Hoke; Yun Hu; Donna M. Huryn; Uday Jain; Mei Jin; Kenneth Alfred Martin Kremer; Dennis M. Kubrak; Melissa Lin; Peimin Lu; Ron Magolda; Robert Martone; William M. Moore; Aram Oganesian; Menelas N. Pangalos

SAR on HTS hits 1 and 2 led to the potent, Notch-1-sparing GSI 9, which lowered brain Abeta in Tg2576 mice at 100 mg/kg po. Converting the metabolically labile methyl groups in 9 to trifluoromethyl groups afforded the more stable analogue 10, which had improved in vivo potency. Further side chain modification afforded the potent Notch-1-sparing GSI begacestat (5), which was selected for development for the treatment of Alzheimers disease.


Journal of Medicinal Chemistry | 2008

Discovery of benzisoxazoles as potent inhibitors of chaperone heat shock protein 90.

Ariamala Gopalsamy; Mengxiao Shi; Jennifer M. Golas; Erik Vogan; Jaison Jacob; Mark S. Johnson; Frederick Lee; Ramaswamy Nilakantan; Roseann Petersen; Kristin Svenson; Rajiv Chopra; May S. Tam; Yingxia Wen; John W. Ellingboe; Kim Arndt; Frank Boschelli

Heat shock protein 90 (Hsp90) is a molecular chaperone that is responsible for activating many signaling proteins and is a promising target in tumor biology. We have identified small-molecule benzisoxazole derivatives as Hsp90 inhibitors. Crystallographic studies show that these compounds bind in the ATP binding pocket interacting with the Asp93. Structure based optimization led to the identification of potent analogues, such as 13, with good biochemical profiles.


Journal of Medicinal Chemistry | 2008

Identification, Characterization and Initial Hit-to-Lead Optimization of a Series of 4-Arylamino-3-Pyridinecarbonitrile as Protein Kinase C theta (PKCθ) Inhibitors

Derek Cecil Cole; Magda Asselin; Agnes Brennan; Robert M. Czerwinski; John W. Ellingboe; Lori Fitz; Rita Greco; Xinyi Huang; Diane Joseph-McCarthy; Michael F. Kelly; Matthew Kirisits; Julie Lee; Yuanhong Li; Paul Morgan; Joseph Raymond Stock; Désirée H. H. Tsao; Allan Wissner; Xiaoke Yang; Divya Chaudhary

The protein kinase C (PKC) family of serine/threonine kinases is implicated in a wide variety of cellular processes. The PKC theta (PKCtheta) isoform is involved in TCR signal transduction and T cell activation and regulates T cell mediated diseases, including lung inflammation and airway hyperresponsiveness. Thus inhibition of PKCtheta enzyme activity by a small molecule represents an attractive strategy for the treatment of asthma. A PKCtheta high-throughput screening (HTS) campaign led to the identification of 4-(3-bromophenylamino)-5-(3,4-dimethoxyphenyl)-3-pyridinecarbonitrile 4a, a low microM ATP competitive PKCtheta inhibitor. Structure based hit-to-lead optimization led to the identification of 5-(3,4-dimethoxyphenyl)-4-(1H-indol-5-ylamino)-3-pyridinecarbonitrile 4p, a 70 nM PKCtheta inhibitor. Compound 4p was selective for inhibition of novel PKC isoforms over a panel of 21 serine/threonine, tyrosine, and phosphoinositol kinases, in addition to the conventional and atypical PKCs, PKCbeta, and PKCzeta, respectively. Compound 4p also inhibited IL-2 production in antiCD3/anti-CD28 activated T cells enriched from splenocytes.


Antimicrobial Agents and Chemotherapy | 2004

Novel Nonnucleoside Inhibitor of Hepatitis C Virus RNA-Dependent RNA Polymerase

Anita Y. M. Howe; Johnathan Bloom; Carl J. Baldick; Christopher A. Benetatos; Huiming Cheng; Joel S. Christensen; Srinivas K. Chunduru; Glen A. Coburn; Boris Feld; Ariamala Gopalsamy; William P. Gorczyca; Steve Herrmann; Stephen V. Johann; Xiaoqun Jiang; Michelle L. Kimberland; Girija Krisnamurthy; Matthew W. Olson; Mark Orlowski; Steve Swanberg; Ian Thompson; Megan Thorn; Alfred M. Del Vecchio; Dorothy C. Young; Marja van Zeijl; John W. Ellingboe; Janis Upeslacis; Marc S. Collett; Tarek S. Mansour; John O'Connell

ABSTRACT A novel nonnucleoside inhibitor of hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp), [(1R)-5-cyano-8-methyl-1-propyl-1,3,4,9-tetrahydropyano[3,4-b]indol-1-yl] acetic acid (HCV-371), was discovered through high-throughput screening followed by chemical optimization. HCV-371 displayed broad inhibitory activities against the NS5B RdRp enzyme, with 50% inhibitory concentrations ranging from 0.3 to 1.8 μM for 90% of the isolates derived from HCV genotypes 1a, 1b, and 3a. HCV-371 showed no inhibitory activity against a panel of human polymerases, including mitochondrial DNA polymerase gamma, and other unrelated viral polymerases, demonstrating its specificity for the HCV polymerase. A single administration of HCV-371 to cells containing the HCV subgenomic replicon for 3 days resulted in a dose-dependent reduction of the steady-state levels of viral RNA and protein. Multiple treatments with HCV-371 for 16 days led to a >3-log10 reduction in the HCV RNA level. In comparison, multiple treatments with a similar inhibitory dose of alpha interferon resulted in a 2-log10 reduction of the viral RNA level. In addition, treatment of cells with a combination of HCV-371 and pegylated alpha interferon resulted in an additive antiviral activity. Within the effective antiviral concentrations of HCV-371, there was no effect on cell viability and metabolism. The intracellular antiviral specificity of HCV-371 was demonstrated by its lack of activity in cells infected with several DNA or RNA viruses. Fluorescence binding studies show that HCV-371 binds the NS5B with an apparent dissociation constant of 150 nM, leading to high selectivity and lack of cytotoxicity in the antiviral assays.


Bioorganic & Medicinal Chemistry Letters | 2001

2,4-thiazolidinediones as potent and selective human β3 agonists

Baihua Hu; John W. Ellingboe; Iwan Gunawan; Stella Han; Elwood E. Largis; Zenan Li; Michael S. Malamas; Ruth Mulvey; Alexander Oliphant; Fuk-Wah Sum; Jeff Tillett; Victoria Wong

Methylsulfonamide substituted 2,4-thiazolidinedione 22c is a potent (EC50=0.01 microM, IA=1.19) and selective (more than 110-fold over beta1 and beta2 agonist activity) beta3 agonist. This compound has also been proven to be active and selective in an in vivo mode.


Journal of Medicinal Chemistry | 2009

Discovery of Potent and Selective Inhibitors of the Mammalian Target of Rapamycin (mTOR) Kinase

Pawel Wojciech Nowak; Derek Cecil Cole; Natasja Brooijmans; Matthew G. Bursavich; Kevin J. Curran; John W. Ellingboe; James Joseph Gibbons; Irwin Hollander; Yongbo Hu; Joshua Kaplan; David Malwitz; Lourdes Toral-Barza; Jeroen C. Verheijen; Arie Zask; Weiguo Zhang; Ker Yu

The mammalian target of rapamycin (mTOR) is a central regulator of cell growth, metabolism, and angiogenesis and an emerging target in cancer research. High throughput screening (HTS) of our compound collection led to the identification of 3-(4-morpholin-4-yl-1-piperidin-4-yl-1H-pyrazolo[3,4-d]pyrimidin-6-yl)phenol (5a), a modestly potent and nonselective inhibitor of mTOR and phosphoinositide 3-kinase (PI3K). Optimization of compound 5a, employing an mTOR homology model based on an X-ray crystal structure of closely related PI3Kgamma led to the discovery of 6-(1H-indol-5-yl)-4-morpholin-4-yl-1-[1-(pyridin-3-ylmethyl)piperidin-4-yl]-1H-pyrazolo[3,4-d]pyrimidine (5u), a potent and selective mTOR inhibitor (mTOR IC(50) = 9 nM; PI3Kalpha IC(50) = 1962 nM). Compound 5u selectively inhibited cellular biomarker of mTORC1 (P-S6K, P-4EBP1) and mTORC2 (P-AKT S473) over the biomarker of PI3K/PDK1 (P-AKT T308) and did not inhibit PI3K-related kinases (PIKKs) in cellular assays. These pyrazolopyrimidines represent an exciting new series of mTOR-selective inhibitors with potential for development for cancer therapy.


Bioorganic & Medicinal Chemistry Letters | 1999

Prodrugs of CL316243: a selective β3-adrenergic receptor agonist for treating obesity and diabetes

F.W. Sum; Adam M. Gilbert; Aranapakam Mudumbai Venkatesan; K. Lim; V. Wong; M. O'Dell; G. Francisco; Z. Chen; George Theodore Grosu; J. Baker; John W. Ellingboe; Michael S. Malamas; I. Gunawan; J. Primeau; E. Largis; K. Steiner

CL316243 is a highly selective and potent beta3-adrenergic receptor agonist, and has been shown in rodent models to be an effective agent for treating obesity and Type II diabetes. To improve the oral absorption and pharmacokinetic profiles of CL316243, a number of prodrugs have been synthesized and evaluated. Several ester-type prodrugs show significant improvements in oral bioavailability in both rodent and primate models.


Journal of Medicinal Chemistry | 2010

Identification and Characterization of Acidic Mammalian Chitinase Inhibitors

Derek Cecil Cole; Andrea Olland; Jaison Jacob; Jon Brooks; Matthew G. Bursavich; Robert M. Czerwinski; Charlene DeClercq; Mark R. Johnson; Diane Joseph-McCarthy; John W. Ellingboe; Laura Lin; Pawel Wojciech Nowak; Ella Presman; James Strand; Amy Tam; Cara Williams; Shihua Yao; Désirée H. H. Tsao; Lori Fitz

Acidic mammalian chitinase (AMCase) is a member of the glycosyl hydrolase 18 family (EC 3.2.1.14) that has been implicated in the pathophysiology of allergic airway disease such as asthma. Small molecule inhibitors of AMCase were identified using a combination of high-throughput screening, fragment screening, and virtual screening techniques and characterized by enzyme inhibition and NMR and Biacore binding experiments. X-ray structures of the inhibitors in complex with AMCase revealed that the larger more potent HTS hits, e.g. 5-(4-(2-(4-bromophenoxy)ethyl)piperazine-1-yl)-1H-1,2,4-triazol-3-amine 1, spanned from the active site pocket to a hydrophobic pocket. Smaller fragments identified by FBS occupy both these pockets independently and suggest potential strategies for linking fragments. Compound 1 is a 200 nM AMCase inhibitor which reduced AMCase enzymatic activity in the bronchoalveolar lavage fluid in allergen-challenged mice after oral dosing.


Bioorganic & Medicinal Chemistry Letters | 2010

Discovery and initial optimization of 5,5'-disubstituted aminohydantoins as potent β-secretase (BACE1) inhibitors

Pawel Wojciech Nowak; Derek Cecil Cole; Ann Aulabaugh; Rajiv Chopra; Rebecca Cowling; Kristi Fan; Baihua Hu; Steve Jacobsen; Minakshi Jani; Guixan Jin; Mei-Chu Lo; Michael S. Malamas; Eric S. Manas; Rani Narasimhan; Peter Reinhart; Albert Jean Robichaud; Joseph Raymond Stock; Joan Subrath; Kristine Svenson; Jim Turner; Erik Wagner; Ping Zhou; John W. Ellingboe

8,8-Diphenyl-2,3,4,8-tetrahydroimidazo[1,5-a]pyrimidin-6-amine (1) was identified through HTS, as a weak (micromolar) inhibitor of BACE1. X-Ray crystallographic studies indicate the 2-aminoimidazole ring forms key H-bonding interactions with Asp32 and Asp228 in the catalytic site of BACE1. Lead optimization using structure-based focused libraries led to the identification of low nanomolar BACE1 inhibitors such as 20b with substituents which extend from the S(1) to the S(3) pocket.

Collaboration


Dive into the John W. Ellingboe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Boris Feld

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge