Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristi Fan is active.

Publication


Featured researches published by Kristi Fan.


European Journal of Medicinal Chemistry | 2003

High throughput artificial membrane permeability assay for blood-brain barrier.

Li Di; Edward H. Kerns; Kristi Fan; Oliver McConnell; Guy T. Carter

The recent advances in high throughput screening for biological activities and combinatorial chemistry have greatly expanded the number of drug candidates. Rapid screening for BBB penetration potential early in drug discovery programs provides important information for compound selection and guidance of synthesis for desirable CNS properties. In this paper, we discuss a modification of the parallel artificial membrane permeation assay (PAMPA) for the prediction of blood-brain barrier penetration (PAMPA-BBB). The assay was developed with 30 structurally diverse commercial drugs and validated with 14 Wyeth Research compounds. The PAMPA-BBB assay has the advantages of: predicting passive blood-brain barrier penetration with high success, high throughput, low cost, and reproducibility.


Journal of Medicinal Chemistry | 2010

Design and Synthesis of 5,5′-Disubstituted Aminohydantoins as Potent and Selective Human β-Secretase (BACE1) Inhibitors

Michael S. Malamas; Jim Erdei; Iwan Gunawan; Jim Turner; Yun Hu; Erik Wagner; Kristi Fan; Rajiv Chopra; Andrea Olland; Steve Jacobsen; Ronald L. Magolda; Menelas N. Pangalos; Albert Jean Robichaud

The identification of small molecule aminohydantoins as potent and selective human beta-secretase inhibitors is reported. These analogues exhibit low nannomolar potency for BACE1, show comparable activity in a cell-based (ELISA) assay, and demonstrate >100x selectivity for the other structurally related aspartyl proteases BACE2, cathepsinD, renin, and pepsin. On the basis of the cocrystal structure of the HTS-hit 2 in the BACE1 active site and by use of a structure-based drug design approach, we methodically explored the comparatively large binding pocket of the BACE1 enzyme and identified key interactions between the ligand and the protein that contributed to the affinity. One of the more potent compounds, (S)-55, displayed an IC(50) value for BACE1 of 10 nM and exhibited comparable cellular activity (EC(50) = 20 nM) in the ELISA assay. Acute oral administration of (S)-55 at 100 mg/kg resulted in a 69% reduction of plasma A beta(40) at 8 h in a Tg2576 mouse (p < 0.001).


Journal of Medicinal Chemistry | 2009

Aminoimidazoles as potent and selective human beta-secretase (BACE1) inhibitors.

Michael S. Malamas; Jim Erdei; Iwan Gunawan; Keith Douglas Barnes; Matthew S. Johnson; Yu Hui; Jim Turner; Yun Hu; Erik Wagner; Kristi Fan; Andrea Olland; Albert Jean Robichaud

The identification of small molecule aminoimidazoles as potent and selective human beta-secretase inhibitors is reported. These analogues demonstrate low nannomolar potency for BACE1 in a FRET assay, exhibit comparable activity in a cell-based (ELISA) assay, and show >100x selectivity for the other structurally related aspartyl proteases BACE2, cathepsin D, renin, and pepsin. Our design strategy was supported by molecular modeling studies based on the cocrystal structure of the HTS-hit 3 in the BACE1 active site. These strategies enabled us to integrate pyridine and pyrimidine groups on 3 extending deep into the S3 region of the BACE1 binding pocket and enhancing the ligands potency. Compound (R)-37 displayed an IC50 value for BACE1 of 20 nM, cellular activity of 90 nM, and >100-fold selectivity over related aspartyl proteases. Acute oral administration of (R)-37 at 30 mg/kg resulted in a significant 71% reduction of plasma Abeta40 measured at the 6 h time point in a Tg2576 mouse model (p < 0.001).


Journal of Medicinal Chemistry | 2008

Discovery of Begacestat, a Notch-1-Sparing γ-Secretase Inhibitor for the Treatment of Alzheimer's Disease

Scott Christian Mayer; Anthony F. Kreft; Boyd L. Harrison; Magid Abou-Gharbia; Madelene Antane; Suzan Aschmies; Kevin Atchison; Michael Chlenov; Derek Cecil Cole; Thomas A. Comery; George Diamantidis; John W. Ellingboe; Kristi Fan; Rocco John Galante; Cathleen Gonzales; Douglas M. Ho; Molly Hoke; Yun Hu; Donna M. Huryn; Uday Jain; Mei Jin; Kenneth Alfred Martin Kremer; Dennis M. Kubrak; Melissa Lin; Peimin Lu; Ron Magolda; Robert Martone; William M. Moore; Aram Oganesian; Menelas N. Pangalos

SAR on HTS hits 1 and 2 led to the potent, Notch-1-sparing GSI 9, which lowered brain Abeta in Tg2576 mice at 100 mg/kg po. Converting the metabolically labile methyl groups in 9 to trifluoromethyl groups afforded the more stable analogue 10, which had improved in vivo potency. Further side chain modification afforded the potent Notch-1-sparing GSI begacestat (5), which was selected for development for the treatment of Alzheimers disease.


Bioorganic & Medicinal Chemistry Letters | 2010

Design and synthesis of aminohydantoins as potent and selective human β-secretase (BACE1) inhibitors with enhanced brain permeability.

Michael S. Malamas; Albert J. Robichaud; Jim Erdei; Dominick Anthony Quagliato; William Ronald Solvibile; Ping Zhou; Koi Michele Morris; Jim Turner; Erik Wagner; Kristi Fan; Andrea Olland; Steve Jacobsen; Peter Reinhart; David Riddell; Menelas N. Pangalos

The identification of small molecule aminohydantoins as potent and selective human β-secretase inhibitors is reported. These analogs exhibit good brain permeability (40-70%), low nanomolar potency for BACE1, and demonstrate >100-fold selectivity for the structurally related aspartyl proteases cathepsin D, renin and pepsin. Alkyl and alkoxy groups at the meta-position of the P1 phenyl, which extend toward the S3 region of the enzyme, have contributed to the ligands reduced affinity for the efflux transporter protein P-gp, and decreased topological polar surface area, thus resulting in enhanced brain permeability. A fluorine substitution at the para-position of the P1 phenyl has contributed to 100-fold decrease of CYP3A4 inhibition and enhancement of compound metabolic stability. The plasma and brain protein binding properties of these new analogs are affected by substitutions at the P1 phenyl moiety. Higher compound protein binding was observed in the brain than in the plasma. Two structurally diverse potent BACE1 inhibitors (84 and 89) reduced 30% plasma Aβ40 in the Tg2576 mice in vivo model at 30 mg/kg p.o..


Journal of Medicinal Chemistry | 2011

Highly Potent, Selective, and Orally Active Phosphodiesterase 10A Inhibitors.

Michael S. Malamas; Yike Ni; James Joseph Erdei; Hans Stange; Rudolf Schindler; Hans-Joachim Lankau; Christian Grunwald; Kristi Fan; Kevin Parris; Barbara Langen; Ute Egerland; Thorsten Hage; Karen L. Marquis; Steve Grauer; Rachel Navarra; Radka Graf; Boyd L. Harrison; Albert Jean Robichaud; Thomas Kronbach; Menelas N. Pangalos; Norbert Hoefgen; Nicholas J. Brandon

The identification of highly potent and orally active phenylpyrazines for the inhibition of PDE10A is reported. The new analogues exhibit subnanomolar potency for PDE10A, demonstrate high selectivity against all other members of the PDE family, and show desired druglike properties. Employing structure-based drug design approaches, we methodically explored two key regions of the binding pocket of the PDE10A enzyme to alter the planarity of the parent compound 1 and optimize its affinity for PDE10A. Bulky substituents at the C9 position led to elimination of the mutagenicity of 1, while a crucial hydrogen bond interaction with Glu716 markedly enhanced its potency and selectivity. A systematic assessment of the ADME and PK properties of the new analogues led to druglike development candidates. One of the more potent compounds, 96, displayed an IC(50) for PDE10A of 0.7 nM and was active in predictive antipsychotic animal models.


Bioorganic & Medicinal Chemistry Letters | 2010

Novel pyrrolyl 2-aminopyridines as potent and selective human beta-secretase (BACE1) inhibitors.

Michael S. Malamas; Keith Douglas Barnes; Yu Hui; Matthew S. Johnson; Frank Lovering; Jeff Condon; William Floyd Fobare; William Ronald Solvibile; Jim Turner; Yun Hu; Eric S. Manas; Kristi Fan; Andrea Olland; Rajiv Chopra; Menelas N. Pangalos; Peter Reinhart; Albert J. Robichaud

The proteolytic enzyme beta-secretase (BACE1) plays a central role in the synthesis of the pathogenic beta-amyloid in Alzheimers disease. Recently, we reported small molecule acylguanidines as potent BACE1 inhibitors. However, many of these acylguanidines have a high polar surface area (e.g. as measured by the topological polar surface area or TPSA), which is unfavorable for crossing the blood-brain barrier. Herein, we describe the identification of the 2-aminopyridine moiety as a bioisosteric replacement of the acylguanidine moiety, which resulted in inhibitors with lower TPSA values and superior brain penetration. X-ray crystallographic studies indicated that the 2-aminopyridine moiety interacts directly with the catalytic aspartic acids Asp32 and Asp228 via a hydrogen-bonding network.


Bioorganic & Medicinal Chemistry Letters | 2010

Discovery and initial optimization of 5,5'-disubstituted aminohydantoins as potent β-secretase (BACE1) inhibitors

Pawel Wojciech Nowak; Derek Cecil Cole; Ann Aulabaugh; Rajiv Chopra; Rebecca Cowling; Kristi Fan; Baihua Hu; Steve Jacobsen; Minakshi Jani; Guixan Jin; Mei-Chu Lo; Michael S. Malamas; Eric S. Manas; Rani Narasimhan; Peter Reinhart; Albert Jean Robichaud; Joseph Raymond Stock; Joan Subrath; Kristine Svenson; Jim Turner; Erik Wagner; Ping Zhou; John W. Ellingboe

8,8-Diphenyl-2,3,4,8-tetrahydroimidazo[1,5-a]pyrimidin-6-amine (1) was identified through HTS, as a weak (micromolar) inhibitor of BACE1. X-Ray crystallographic studies indicate the 2-aminoimidazole ring forms key H-bonding interactions with Asp32 and Asp228 in the catalytic site of BACE1. Lead optimization using structure-based focused libraries led to the identification of low nanomolar BACE1 inhibitors such as 20b with substituents which extend from the S(1) to the S(3) pocket.


Journal of Medicinal Chemistry | 2014

The Medicinal Chemistry of Liver X Receptor (LXR) Modulators

Colin M. Tice; Paul B. Noto; Kristi Fan; Linghang Zhuang; Deepak S. Lala; Suresh B. Singh

LXRs have been of interest as targets for the treatment of atherosclerosis for over a decade. In recent years, LXR modulators have also garnered interest for potential use in the treatment of inflammation, Alzheimers disease (AD), dermatological conditions, hepatic steatosis, and oncology. To date, no LXR modulator has successfully progressed beyond phase I clinical trials. In this Perspective, we summarize published medicinal chemistry efforts in the context of the available crystallographic data, druglikeness, and isoform selectivity. In addition, we discuss the challenges that need to be overcome before an LXR modulator can reach clinical use.


Bioorganic & Medicinal Chemistry Letters | 2012

Novel triazines as potent and selective phosphodiesterase 10A inhibitors.

Michael S. Malamas; Hans Stange; Rudolf Schindler; Hans-Joachim Lankau; Christian Grunwald; Barbara Langen; Ute Egerland; Thorsten Hage; Yike Ni; James Joseph Erdei; Kristi Fan; Kevin Parris; Karen L. Marquis; Steve Grauer; Rachel Navarra; Radka Graf; Boyd L. Harrison; Albert J. Robichaud; Thomas Kronbach; Menelas N. Pangalos; Nicholas J. Brandon; Norbert Hoefgen

The identification of highly potent and orally active triazines for the inhibition of PDE10A is reported. The new analogs exhibit low-nanomolar potency for PDE10A, demonstrate high selectivity against all other members of the PDE family, and show desired drug-like properties. Employing structure-based drug design approaches, we investigated the selectivity of PDE10A inhibitors against other known PDE isoforms, by methodically exploring the various sub-regions of the PDE10A ligand binding pocket. A systematic assessment of the ADME and pharmacokinetic properties of the newly synthesized compounds has led to the design of drug-like candidates with good brain permeability and desirable drug kinetics (t(1/2), bioavailability, clearance). Compound 66 was highly potent for PDE10A (IC(50)=1.4 nM), demonstrated high selectivity (>200×) for the other PDEs, and was efficacious in animal models of psychoses; reversal of MK-801 induced hyperactivity (MED=0.1mg/kg) and conditioned avoidance responding (CAR; ID(50)=0.2 mg/kg).

Collaboration


Dive into the Kristi Fan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yun Hu

Princeton University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge