Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johnathan J. Dalzell is active.

Publication


Featured researches published by Johnathan J. Dalzell.


PLOS Neglected Tropical Diseases | 2011

RNAi effector diversity in nematodes

Johnathan J. Dalzell; Paul McVeigh; Neil D. Warnock; Makedonka Mitreva; David McK. Bird; Pierre Abad; Colin C. Fleming; Tim A. Day; Angela Mousley; Nikki J. Marks; Aaron G. Maule

While RNA interference (RNAi) has been deployed to facilitate gene function studies in diverse helminths, parasitic nematodes appear variably susceptible. To test if this is due to inter-species differences in RNAi effector complements, we performed a primary sequence similarity survey for orthologs of 77 Caenorhabditis elegans RNAi pathway proteins in 13 nematode species for which genomic or transcriptomic datasets were available, with all outputs subjected to domain-structure verification. Our dataset spanned transcriptomes of Ancylostoma caninum and Oesophagostomum dentatum, and genomes of Trichinella spiralis, Ascaris suum, Brugia malayi, Haemonchus contortus, Meloidogyne hapla, Meloidogyne incognita and Pristionchus pacificus, as well as the Caenorhabditis species C. brenneri, C. briggsae, C. japonica and C. remanei, and revealed that: (i) Most of the C. elegans proteins responsible for uptake and spread of exogenously applied double stranded (ds)RNA are absent from parasitic species, including RNAi-competent plant-nematodes; (ii) The Argonautes (AGOs) responsible for gene expression regulation in C. elegans are broadly conserved, unlike those recruited during the induction of RNAi by exogenous dsRNA; (iii) Secondary Argonautes (SAGOs) are poorly conserved, and the nuclear AGO NRDE-3 was not identified in any parasite; (iv) All five Caenorhabditis spp. possess an expanded RNAi effector repertoire relative to the parasitic nematodes, consistent with the propensity for gene loss in nematode parasites; (v) In spite of the quantitative differences in RNAi effector complements across nematode species, all displayed qualitatively similar coverage of functional protein groups. In summary, we could not identify RNAi effector deficiencies that associate with reduced susceptibility in parasitic nematodes. Indeed, similarities in the RNAi effector complements of RNAi refractory and competent nematode parasites support the broad applicability of this research genetic tool in nematodes.


Trends in Parasitology | 2011

An eye on RNAi in nematode parasites

Aaron G. Maule; Paul McVeigh; Johnathan J. Dalzell; Louise E. Atkinson; Angela Mousley; Nikki J. Marks

RNA interference (RNAi) has revolutionised approaches to gene function determination. From a parasitology perspective, gene function studies have the added dimension of providing validation data, increasingly deemed essential to the initial phases of drug target selection, pre-screen development. Notionally advantageous to those working on nematode parasites is the fact that Caenorhabditis elegans research spawned RNAi discovery and continues to seed our understanding of its fundamentals. Unfortunately, RNAi data for nematode parasites illustrate variable and inconsistent susceptibilities which undermine confidence and exploitation. Now well-ensconced in an era of nematode parasite genomics, we can begin to unscramble this variation.


International Journal for Parasitology | 2009

Non-nematode-derived double-stranded RNAs induce profound phenotypic changes in Meloidogyne incognita and Globodera pallida infective juveniles

Johnathan J. Dalzell; Steven McMaster; Michael J. Johnston; Rachel Kerr; Colin C. Fleming; Aaron G. Maule

Nine non-nematode-derived double-stranded RNAs (dsRNAs), designed for use as controls in RNA interference (RNAi) screens of neuropeptide targets, were found to induce aberrant phenotypes and an unexpected inhibitory effect on motility of root knot nematode Meloidogyne incognita J2s following 24h soaks in 0.1 mg/ml dsRNA; a simple soaking procedure which we have found to elicit profound knockdown of neuronal targets in Globodera pallida J2s. We have established that this inhibitory phenomenon is both time- and concentration-dependent, as shorter 4h soaks in 0.1 mg/ml dsRNA had no negative impact on M. incognita J2 stage worms, yet a 10-fold increase in concentration to 1 mg/ml for the same 4h time period had an even greater qualitative and quantitative impact on worm phenotype and motility. Further, a 10-fold increase of J2s soaked in 0.1 mg/ml dsRNA did not significantly alter the observed phenotypic aberration, which suggests that dsRNA uptake of the soaked J2s is not saturated under these conditions. This phenomenon was not initially observed in potato cyst nematode G. pallida J2s, which displayed no aberrant phenotype, or diminution of migratory activity in response to the same 0.1 mg/ml dsRNA 24h soaks. However, a 10-fold increase in dsRNA to 1mg/ml was found to elicit comparable irregularity of phenotype and inhibition of motility in G. pallida, to that initially observed in M. incognita following a 24h soak in 0.1 mg/ml dsRNA. Again, a 10-fold increase in the number of G. pallida J2s soaked in the same volume of 1 mg/ml dsRNA preparation did not significantly affect the observed phenotypic deviation. We do not observe any global impact on transcript abundance in either M. incognita or G. pallida J2s following 0.1 mg/ml dsRNA soaks, as revealed by reverse transcriptase-PCR and quantitative PCR data. This study aims to raise awareness of a phenomenon which we observe consistently and which we believe signifies a more expansive deficiency in our knowledge and understanding of the variables inherent to RNAi-based investigation.


International Journal for Parasitology-Drugs and Drug Resistance | 2012

Parasite neuropeptide biology: Seeding rational drug target selection?

Paul McVeigh; Louise E. Atkinson; Nikki J. Marks; Angela Mousley; Johnathan J. Dalzell; Ann Sluder; Lance Hammerland; Aaron G. Maule

The rationale for identifying drug targets within helminth neuromuscular signalling systems is based on the premise that adequate nerve and muscle function is essential for many of the key behavioural determinants of helminth parasitism, including sensory perception/host location, invasion, locomotion/orientation, attachment, feeding and reproduction. This premise is validated by the tendency of current anthelmintics to act on classical neurotransmitter-gated ion channels present on helminth nerve and/or muscle, yielding therapeutic endpoints associated with paralysis and/or death. Supplementary to classical neurotransmitters, helminth nervous systems are peptide-rich and encompass associated biosynthetic and signal transduction components - putative drug targets that remain to be exploited by anthelmintic chemotherapy. At this time, no neuropeptide system-targeting lead compounds have been reported, and given that our basic knowledge of neuropeptide biology in parasitic helminths remains inadequate, the short-term prospects for such drugs remain poor. Here, we review current knowledge of neuropeptide signalling in Nematoda and Platyhelminthes, and highlight a suite of 19 protein families that yield deleterious phenotypes in helminth reverse genetics screens. We suggest that orthologues of some of these peptidergic signalling components represent appealing therapeutic targets in parasitic helminths.


International Journal for Parasitology | 2010

Short interfering RNA-mediated knockdown of drosha and pasha in undifferentiated Meloidogyne incognita eggs leads to irregular growth and embryonic lethality.

Johnathan J. Dalzell; Neil D. Warnock; Michael Stevenson; Angela Mousley; Colin C. Fleming; Aaron G. Maule

Micro-(mi)RNAs play a pivotal role in the developmental regulation of plants and animals. We reasoned that disruption of normal heterochronic activity in differentiating Meloidogyne incognita eggs may lead to irregular development, lethality and by extension, represent a novel target for parasite control. On silencing the nuclear RNase III enzyme drosha, a critical effector of miRNA maturation in animals, we found a significant inhibition of normal development and hatching in short interfering (si)RNA-soaked M. incognita eggs. Developing juveniles presented with highly irregular tissue patterning within the egg, and we found that unlike our previous gene silencing efforts focused on FMRFamide (Phe-Met-Arg-Phe-NH(2))-like peptides (FLPs), there was no observable phenotypic recovery following removal of the environmental siRNA. Aberrant phenotypes were exacerbated over time, and drosha knockdown proved embryonically lethal. Subsequently, we identified and silenced the drosha cofactor pasha, revealing a comparable inhibition of normal embryonic development within the eggs to that of drosha-silenced eggs, eventually leading to embryonic lethality. To further probe the link between normal embryonic development and the M. incognita RNA interference (RNAi) pathway, we attempted to examine the impact of silencing the cytosolic RNase III enzyme dicer. Unexpectedly, we found a substantial up-regulation of dicer transcript abundance, which did not impact on egg differentiation or hatching rates. Silencing of the individual transcripts in hatched J2s was significantly less successful and resulted in temporary phenotypic aberration of the J2s, which recovered within 24h to normal movement and posture on washing out the siRNA. Soaking the J2s in dicer siRNA resulted in a modest decrease in dicer transcript abundance which had no observable impact on phenotype or behaviour within 48h of initial exposure to siRNA. We propose that drosha, pasha and their ancillary factors may represent excellent targets for novel nematicides and/or in planta controls aimed at M. incognita, and potentially other parasitic nematodes, through disruption of miRNA-directed developmental pathways. In addition, we have identified a putative Mi-eri-1 transcript which encodes an RNAi-inhibiting siRNA exonuclease. We observe a marked up-regulation of Mi-eri-1 transcript abundance in response to exogenously introduced siRNA, and reason that this may impact on the interpretation of RNAi-based reverse genetic screens in plant parasitic nematodes.


Parasitology | 2012

Considering RNAi experimental design in parasitic helminths.

Johnathan J. Dalzell; Neil D. Warnock; Paul McVeigh; Nikki J. Marks; Angela Mousley; Louise E. Atkinson; Aaron G. Maule

Almost a decade has passed since the first report of RNA interference (RNAi) in a parasitic helminth. Whilst much progress has been made with RNAi informing gene function studies in disparate nematode and flatworm parasites, substantial and seemingly prohibitive difficulties have been encountered in some species, hindering progress. An appraisal of current practices, trends and ideals of RNAi experimental design in parasitic helminths is both timely and necessary for a number of reasons: firstly, the increasing availability of parasitic helminth genome/transcriptome resources means there is a growing need for gene function tools such as RNAi; secondly, fundamental differences and unique challenges exist for parasite species which do not apply to model organisms; thirdly, the inherent variation in experimental design, and reported difficulties with reproducibility undermine confidence. Ideally, RNAi studies of gene function should adopt standardised experimental design to aid reproducibility, interpretation and comparative analyses. Although the huge variations in parasite biology and experimental endpoints make RNAi experimental design standardization difficult or impractical, we must strive to validate RNAi experimentation in helminth parasites. To aid this process we identify multiple approaches to RNAi experimental validation and highlight those which we deem to be critical for gene function studies in helminth parasites.


PLOS Pathogens | 2017

Nematode neuropeptides as transgenic nematicides

Neil D. Warnock; Leonie Wilson; Cheryl L. Patten; Colin C. Fleming; Aaron G. Maule; Johnathan J. Dalzell

Plant parasitic nematodes (PPNs) seriously threaten global food security. Conventionally an integrated approach to PPN management has relied heavily on carbamate, organophosphate and fumigant nematicides which are now being withdrawn over environmental health and safety concerns. This progressive withdrawal has left a significant shortcoming in our ability to manage these economically important parasites, and highlights the need for novel and robust control methods. Nematodes can assimilate exogenous peptides through retrograde transport along the chemosensory amphid neurons. Peptides can accumulate within cells of the central nerve ring and can elicit physiological effects when released to interact with receptors on adjoining cells. We have profiled bioactive neuropeptides from the neuropeptide-like protein (NLP) family of PPNs as novel nematicides, and have identified numerous discrete NLPs that negatively impact chemosensation, host invasion and stylet thrusting of the root knot nematode Meloidogyne incognita and the potato cyst nematode Globodera pallida. Transgenic secretion of these peptides from the rhizobacterium, Bacillus subtilis, and the terrestrial microalgae Chlamydomonas reinhardtii reduce tomato infection levels by up to 90% when compared with controls. These data pave the way for the exploitation of nematode neuropeptides as a novel class of plant protective nematicide, using novel non-food transgenic delivery systems which could be deployed on farmer-preferred cultivars.


PLOS Pathogens | 2017

A neuropeptide modulates sensory perception in the entomopathogenic nematode Steinernema carpocapsae

Robert Morris; Leonie Wilson; Matthew Sturrock; Neil D. Warnock; Daniel Carrizo; Deborah Cox; Aaron G. Maule; Johnathan J. Dalzell

Entomopathogenic nematodes (EPNs) employ a sophisticated chemosensory apparatus to detect potential hosts. Understanding the molecular basis of relevant host-finding behaviours could facilitate improved EPN biocontrol approaches, and could lend insight to similar behaviours in economically important mammalian parasites. FMRFamide-like peptides are enriched and conserved across the Phylum Nematoda, and have been linked with motor and sensory function, including dispersal and aggregating behaviours in the free living nematode Caenorhabditis elegans. The RNA interference (RNAi) pathway of Steinernema carpocapsae was characterised in silico, and employed to knockdown the expression of the FMRFamide-like peptide 21 (GLGPRPLRFamide) gene (flp-21) in S. carpocapsae infective juveniles; a first instance of RNAi in this genus, and a first in an infective juvenile of any EPN species. Our data show that 5 mg/ml dsRNA and 50 mM serotonin triggers statistically significant flp-21 knockdown (-84%***) over a 48 h timecourse, which inhibits host-finding (chemosensory), dispersal, hyperactive nictation and jumping behaviours. However, whilst 1 mg/ml dsRNA and 50 mM serotonin also triggers statistically significant flp-21 knockdown (-51%**) over a 48 h timecourse, it does not trigger the null sensory phenotypes; statistically significant target knockdown can still lead to false negative results, necessitating appropriate experimental design. SPME GC-MS volatile profiles of two EPN hosts, Galleria mellonella and Tenebrio molitor reveal an array of shared and unique compounds; these differences had no impact on null flp-21 RNAi phenotypes for the behaviours assayed. Localisation of flp-21 / FLP-21 to paired anterior neurons by whole mount in situ hybridisation and immunocytochemistry corroborates the RNAi data, further suggesting a role in sensory modulation. These data can underpin efforts to study these behaviours in other economically important parasites, and could facilitate molecular approaches to EPN strain improvement for biocontrol.


International Journal for Parasitology | 2016

Exogenous RNA interference exposes contrasting roles for sugar exudation in host-finding by plant pathogens

Neil D. Warnock; Leonie Wilson; Juan V. Canet-Perez; Thomas Fleming; Colin C. Fleming; Aaron G. Maule; Johnathan J. Dalzell

Plant parasitic nematodes (PPN) locate host plants by following concentration gradients of root exudate chemicals in the soil. We present a simple method for RNA interference (RNAi)-induced knockdown of genes in tomato seedling roots, facilitating the study of root exudate composition, and PPN responses. Knockdown of sugar transporter genes, STP1 and STP2, in tomato seedlings triggered corresponding reductions of glucose and fructose, but not xylose, in collected root exudate. This corresponded directly with reduced infectivity and stylet thrusting of the promiscuous PPN Meloidogyne incognita, however we observed no impact on the infectivity or stylet thrusting of the selective Solanaceae PPN Globodera pallida. This approach can underpin future efforts to understand the early stages of plant-pathogen interactions in tomato and potentially other crop plants.


Annual Review of Phytopathology | 2018

Plant-Parasitic Nematodes and Food Security in Sub-Saharan Africa

Danny Coyne; Laura Cortada; Johnathan J. Dalzell; Abiodun O. Claudius-Cole; Solveig Haukeland; Nessie Luambano; Herbert Talwana

Sub-Saharan Africa (SSA) is a region beset with challenges, not least its ability to feed itself. Low agricultural productivity, exploding populations, and escalating urbanization have led to declining per capita food availability. In order to reverse this trend, crop production systems must intensify, which brings with it an elevated threat from pests and diseases, including plant-parasitic nematodes. A holistic systems approach to pest management recognizes disciplinary integration. However, a critical under-representation of nematology expertise is a pivotal shortcoming, especially given the magnitude of the threat nematodes pose under more intensified systems. With more volatile climates, efficient use of water by healthy root systems is especially crucial. Within SSA, smallholder farming systems dominate the agricultural landscape, where a limited understanding of nematode problems prevails. This review provides a synopsis of current nematode challenges facing SSA and presents the opportunities to overcome current shortcomings, including a means to increase nematology capacity.

Collaboration


Dive into the Johnathan J. Dalzell's collaboration.

Top Co-Authors

Avatar

Aaron G. Maule

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Neil D. Warnock

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Colin C. Fleming

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Angela Mousley

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Paul McVeigh

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Leonie Wilson

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Nikki J. Marks

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Deborah Cox

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge