Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jolanta Belter is active.

Publication


Featured researches published by Jolanta Belter.


Central European Journal of Biology | 2014

Toxigenic Fusarium species infecting wheat heads in Poland

Halina Wiśniewska; Łukasz Stępień; Agnieszka Waśkiewicz; Monika Beszterda; Tomasz Góral; Jolanta Belter

Toxigenic Fusarium species are common pathogens of wheat and other cereals worldwide. In total, 449 wheat heads from six localities in Poland, heavily infected with Fusarium during 2009 season, were examined for Fusarium species identification. F. culmorum was the most common species (72.1% on average) with F. graminearum and F. avenaceum the next most commonly observed, but much less frequent (13.4 and 12.5% respectively). F. cerealis was found in 1.8% of all samples, and F. tricinctum was found only in one sample (0.2%). Subsequent quantification of the three major mycotoxins (deoxynivalenol, zearalenone and moniliformin) in grain and chaff fractions with respect to associated prevailing pathogen species uncovered the following patterns. Moniliformin (MON) was found in low amounts in all samples with F. avenaceum present. In contrast, deoxynivalenol (DON) and zearalenone (ZEA) were the contaminants of F. culmorum- and F. graminearum-infected heads. The highest concentration of DON was recorded in grain sample collected in Radzików (77 µg g−1). High temperatures in Central Poland during July and August accompanied with high rainfall in July were responsible for this high DON accumulation. Trichothecene, zearalenone, enniatin and beauvericin chemotypes were identified among 21 purified isolates using gene-specific PCR markers.


Protoplasma | 2016

Allocation of the S-genome chromosomes of Aegilops variabilis Eig. carrying powdery mildew resistance in triticale (× Triticosecale Wittmack)

Michał Kwiatek; Jolanta Belter; Maciej Majka; Halina Wiśniewska

It has been hypothesized that the powdery mildew adult plant resistance (APR) controlled by the Pm13 gene in Aegilops longissima Schweinf. & Muschl. (SlSl) has been evolutionary transferred to Aegilops variabilis Eig. (UUSS). The molecular marker analysis and the visual evaluation of powdery mildew symptoms in Ae. variabilis and the Ae. variabilis × Secale cereale amphiploid forms (2n = 6x = 42, UUSSRR) showed the presence of product that corresponded to Pm13 marker and the lower infection level compared to susceptible model, respectively. This study also describes the transfer of Ae. variabilis Eig. (2n = 4x = 28, UvUvSvSv) chromosomes, carrying powdery mildew resistance, into triticale (× Triticosecale Wittm., 2n = 6x = 42, AABBRR) using Ae. variabilis × S. cereale amphiploid forms. The individual chromosomes of Ae. variabilis, triticale ‘Lamberto’ and hybrids were characterized by genomic and fluorescence in situ hybridization (GISH/FISH). The chromosome configurations of obtained hybrid forms were studied at first metaphase of meiosis of pollen mother cells (PMCs) using GISH. The statistical analysis showed that the way of S-genome chromosome pairing and transmission to subsequent hybrid generations was diploid-like and had no influence on chromosome pairing of triticale chromosomes. The cytogenetic study of hybrid forms were supported by the marker-assisted selection using Pm13 marker and visual evaluation of natural infection by Blumeria graminis, that allowed to select the addition or substitution lines of hybrids carrying chromosome 3Sv which were tolerant to the powdery mildew infection.


PLOS ONE | 2016

Intraspecific Polymorphisms of Cytogenetic Markers Mapped on Chromosomes of Triticum polonicum L.

Michał Kwiatek; Maciej Majka; Joanna Majka; Jolanta Belter; Elżbieta Suchowilska; Urszula Wachowska; Marian Wiwart; Halina Wiśniewska

Triticum genus encloses several tetraploid species that are used as genetic stocks for expanding the genetic variability of wheat (Triticum aestivum L.). Although the T. aestivum (2n = 6x = 42, AABBDD) and T. durum (2n = 4x = 28, AABB) karyotypes were well examined by chromosome staining, Giemsa C-banding and FISH markers, other tetraploids are still poorly characterized. Here, we established and compared the fluorescence in situ hybridization (FISH) patterns on chromosomes of 20 accessions of T. polonicum species using different repetitive sequences from BAC library of wheat ‘Chinese Spring’. The chromosome patterns of Polish wheat were compared to tetraploid (2n = 4x = 28, AABB) Triticum species: T. durum, T. diccocon and T. turanicum, as well. A combination of pTa-86, pTa-535 and pTa-713 probes was the most informative among 6 DNA probes tested. Probe pTa-k374, which is similar to 28S rDNA sequence enabled to distinguish signal size and location differences, as well as rDNA loci elimination. Furthermore, pTa-465 and pTa-k566 probes are helpful for the detection of similar organized chromosomes. The polymorphisms of signals distribution were observed in 2A, 2B, 3B, 5B, 6A and 7B chromosomes. Telomeric region of the short arm of 6B chromosome was the most polymorphic. Our work is novel and contributes to the understanding of T. polonicum genome organization which is essential to develop successful advanced breeding strategies for wheat. Collection and characterization of this germplasm can contribute to the wheat biodiversity safeguard.


Journal of Applied Genetics | 2015

Effective transfer of chromosomes carrying leaf rust resistance genes from Aegilops tauschii Coss. into hexaploid triticale (X Triticosecale Witt.) using Ae. tauschii × Secale cereale amphiploid forms.

Michał Kwiatek; Maciej Majka; Halina Wiśniewska; Barbara Apolinarska; Jolanta Belter

This paper shows the results of effective uses of a molecular cytogenetics toolbox and molecular marker to transfer leaf rust resistance genes from Aegilops tauschii × Secale cereale (DDRR, 2n = 4x = 28) amphiploid forms to triticale cv. Bogo (AABBRR, 2n = 6x = 42). The molecular markers of resistance genes and in situ hybridization analysis of mitotic metaphase of root meristems confirmed the stable inheritance of chromosome 3D segments carrying Lr32 from the BC2F2 to the BC2F5 generation of (Ae. tauschii × S. cereale) × triticale hybrids. The chromosome pairing analysis during metaphase I of meiosis of BC2F4 and BC2F5 hybrids showed increasing regular bivalent formation of 3D chromosome pairs and decreasing number of univalents in subsequent generations. The results indicate that using amphiploid forms as a bridge between wild and cultivated forms can be a successful technology to transfer the D-genome chromatin carrying leaf rust resistance genes into triticale.


Journal of Applied Genetics | 2016

Transmission of the Aegilops ovata chromosomes carrying gametocidal factors in hexaploid triticale (×Triticosecale Wittm.) hybrids

Michał Kwiatek; Maciej Majka; Aurelia Ślusarkiewicz-Jarzina; Aleksandra Ponitka; Hanna Pudelska; Jolanta Belter; Halina Wiśniewska

The main aim of this work was to induce the chromosome rearrangements between Aegilops ovata (UUMM) and hexaploid triticale (AABBRR) by expression of the gametocidal factor located on the chromosome 4M. The Aegilops ovata × Secale cereale (UUMMRR) amphiploids and triticale ‘Moreno’ were used to produce hybrids by reciprocal crosses. Chromosome dynamics was observed in subsequent generations of hybrids during mitotic metaphase of root meristems and first metaphase of meiosis of pollen mother cells. Chromosomes were identified by genomic in situ hybridisation (GISH) and fluorescence in situ hybridisation (FISH) using pTa71, pTa791, pSc119.2 and pAs1 DNA probes. It has been shown that the origin of the genetic background had an influence on Aegilops chromosome transmission. Moreover, it has been reported that the preferential transmission of chromosome 4M appeared during both androgenesis and gynogenesis. It is also hypothesised that the expression of the triticale Gc gene suppressor had an influence on the semi-fertility of hybrids but did not inhibit the chromosome rearrangements. This paper also describes the double haploid production, which enabled to obtain plants with two identical copies of triticale chromosomes with translocations of Aegilops chromatin segments.


Frontiers in Plant Science | 2017

Gametocidal Factor Transferred from Aegilops geniculata Roth Can Be Adapted for Large-Scale Chromosome Manipulations in Cereals

Michał Kwiatek; Halina Wiśniewska; Aurelia Ślusarkiewicz-Jarzina; Joanna Majka; Maciej Majka; Jolanta Belter; Hanna Pudelska

Segregation distorters are curious, evolutionarily selfish genetic elements, which distort Mendelian segregation in their favor at the expense of others. Those agents include gametocidal factors (Gc), which ensure their preferential transmission by triggering damages in cells lacking them via chromosome break induction. Hence, we hypothesized that the gametocidal system can be adapted for chromosome manipulations between Triticum and Secale chromosomes in hexaploid triticale (×Triticosecale Wittmack). In this work we studied the little-known gametocidal action of a Gc factor located on Aegilops geniculata Roth chromosome 4Mg. Our results indicate that the initiation of the gametocidal action takes place at anaphase II of meiosis of pollen mother cells. Hence, we induced androgenesis at postmeiotic pollen divisions (via anther cultures) in monosomic 4Mg addition plants of hexaploid triticale (AABBRR) followed by production of doubled haploids, to maintain the chromosome aberrations caused by the gametocidal action. This approach enabled us to obtain a large number of plants with two copies of particular chromosome translocations, which were identified by the use of cytomolecular methods. We obtained 41 doubled haploid triticale lines and 17 of them carried chromosome aberrations that included plants with the following chromosome sets: 40T+Dt2RS+Dt2RL (5 lines), 40T+N2R (1), 38T+D4RS.4BL (3), 38T+D5BS-5BL.5RL (5), and 38T+D7RS.3AL (3). The results show that the application of the Gc mechanism in combination with production of doubled haploid lines provides a sufficiently large population of homozygous doubled haploid individuals with two identical copies of translocation chromosomes. In our opinion, this approach will be a valuable tool for the production of novel plant material, which could be used for gene tracking studies, genetic mapping, and finally to enhance the diversity of cereals.


Breeding Science | 2016

Simultaneous selection for yield-related traits and susceptibility to Fusarium head blight in spring wheat RIL population

Halina Wiśniewska; Maria Surma; Karolina Krystkowiak; Tadeusz Adamski; Anetta Kuczyńska; Piotr Ogrodowicz; Krzysztof Mikołajczak; Jolanta Belter; Maciej Majka; Zygmunt Kaczmarek; Paweł Krajewski; Aneta Sawikowska; Leszek Lenc; Anna Baturo-Cieśniewska; Aleksander Łukanowski; Tomasz Góral; Czesław Sadowski

Fusarium head blight (FHB), caused by the fungal plant pathogen Fusarium, is a fungal disease that occurs in wheat and can cause significant yield and grain quality losses. The present paper examines variation in the resistance of spring wheat lines derived from a cross between Zebra and Saar cultivars. Experiments covering 198 lines and parental cultivars were conducted in three years, in which inoculation with Fusarium culmorum was applied. Resistance levels were estimated by scoring disease symptoms on kernels. In spite of a similar reaction of parents to F. culmorum infection, significant differentiation between lines was found in all the analyzed traits. Seven molecular markers selected as linked to FHB resistance QTLs gave polymorphic products for Zebra and Saar: Xgwm566, Xgwm46, Xgwm389, Xgwm533, Xgwm156, Xwmc238, and Xgwm341. Markers Xgwm389 and Xgwm533 were associated with the rate of Fusarium-damaged kernels (FDK) as well as with kernel weight per spike and thousand kernel weight in control plants. Zebra allele of marker Xwmc238 increased kernel weight per spike and thousand kernel weight both in control and infected plants, whereas Zebra allele of marker Xgwm566 reduced the percentage of FDK and simultaneously reduced the thousand kernel weight in control and infected plants.


Frontiers in Plant Science | 2017

Adaptation of the Pivotal-Differential Genome Pattern for the Induction of Intergenomic Chromosome Recombination in Hybrids of Synthetic Amphidiploids within Triticeae Tribe

Michał Kwiatek; Joanna Majka; Maciej Majka; Jolanta Belter; Halina Wisniewska

A pivotal-differential evolution pattern is when two allopolyploids share a common genome, which is called pivotal, and differ with respect to the other genome or genomes, called differential. This feature induces the intergenomic recombination between chromosomes of differential genomes, which can lead to speciation. Our study is a cytomolecular insight into this mechanism which was adapted for the induction of intergenomic chromosome recombination in hybrids of synthetic amphidiploids Aegilops biuncialis × S. cereale (UUMMRR) and triticale (AABBRR) where R-genome was pivotal. We observed chromosome recombination events which were induced by both: (1) random chromosome fragmentation and non-homologous chromosome end joining at mitosis of root meristem cells and (2) intergenomic chromosome associations at meiosis of pollen mother cells (PMCs) of F1 hybrids. Reciprocal chromosome translocations were identified in six F1 plants and 15 plants of F2 generation using fluorescence in situ hybridization (FISH) with DNA clones (pTa-86, pTa-k374, pTa-465, pTa-535, pTa-k566, and pTa-713). We observed signals of pTa-86, pTa-535, and pTa-k566 probes in several chromosome breakpoints. The comparison of the DNA clone sequences distinguished a number of common motifs, which can be considered as characteristics of chromosome breakpoint loci. Immunodetection of synaptonemal complex proteins and genomic in situ hybridization analysis at meiosis of PMCs of F1 hybrids showed, that the homologous pairing of pivotal R—genome chromosomes is crucial for the fertility of F1 hybrids, however, these chromosomes can be also involved in the intergeneric recombination.


Cereal Research Communications | 2015

Using markers and field evaluation to identify the source of eyespot resistance gene Pch1 in the collection of wheat breeding lines

Michał Kwiatek; Halina Wiśniewska; Zygmunt Kaczmarek; Marek Korbas; Magdalena Gawłowska; Maciej Majka; Katarzyna Pankiewicz; Jakub Danielewicz; Jolanta Belter

Pch1 gene translocated from Aegilops ventricosa provides effective resistance to eyespot in wheat. To track the Pch1 gene introgression, we investigated 372 genotypes obtained from various breeding programs using endopeptidase EpD1b marker, sequence-tagged-site (STS) marker XustSSR2001-7DL, and the score of infection index (K-index) evaluated after in vivo inoculation test. These genotypes were divided into three groups with 136, 124 and 112 genotypes for the field test lasting three years. In 2011, the mean K-index was 0.81, while 2012 and 2013 the mean K-indexes were 1.60 and 1.46, respectively. Both marker results indicated that 18 genotypes possessed Pch1 gene. Statistical analysis of the level of K-index showed that these 18 genotypes were resistant to eyespot, which verified the proper assignment of wheat genotypes with Pch1 gene based on the marker data. Thus, the endopeptidase and XustSSR2001-7DL are useful for identifying sources of eyespot resistance gene Pch1 in wheat breeding program.


Plant Cell Reports | 2016

Characterization of morphology and resistance to Blumeria graminis of winter triticale monosomic addition lines with chromosome 2D of Aegilops tauschii

Maciej Majka; Michał Kwiatek; Jolanta Belter; Halina Wiśniewska

Collaboration


Dive into the Jolanta Belter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maciej Majka

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Michał Kwiatek

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Joanna Majka

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hanna Pudelska

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zygmunt Kaczmarek

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Agnieszka Waśkiewicz

University of Life Sciences in Poznań

View shared research outputs
Researchain Logo
Decentralizing Knowledge