Maciej Majka
Polish Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maciej Majka.
Protoplasma | 2016
Michał Kwiatek; Jolanta Belter; Maciej Majka; Halina Wiśniewska
It has been hypothesized that the powdery mildew adult plant resistance (APR) controlled by the Pm13 gene in Aegilops longissima Schweinf. & Muschl. (SlSl) has been evolutionary transferred to Aegilops variabilis Eig. (UUSS). The molecular marker analysis and the visual evaluation of powdery mildew symptoms in Ae. variabilis and the Ae. variabilis × Secale cereale amphiploid forms (2n = 6x = 42, UUSSRR) showed the presence of product that corresponded to Pm13 marker and the lower infection level compared to susceptible model, respectively. This study also describes the transfer of Ae. variabilis Eig. (2n = 4x = 28, UvUvSvSv) chromosomes, carrying powdery mildew resistance, into triticale (× Triticosecale Wittm., 2n = 6x = 42, AABBRR) using Ae. variabilis × S. cereale amphiploid forms. The individual chromosomes of Ae. variabilis, triticale ‘Lamberto’ and hybrids were characterized by genomic and fluorescence in situ hybridization (GISH/FISH). The chromosome configurations of obtained hybrid forms were studied at first metaphase of meiosis of pollen mother cells (PMCs) using GISH. The statistical analysis showed that the way of S-genome chromosome pairing and transmission to subsequent hybrid generations was diploid-like and had no influence on chromosome pairing of triticale chromosomes. The cytogenetic study of hybrid forms were supported by the marker-assisted selection using Pm13 marker and visual evaluation of natural infection by Blumeria graminis, that allowed to select the addition or substitution lines of hybrids carrying chromosome 3Sv which were tolerant to the powdery mildew infection.
PLOS ONE | 2016
Michał Kwiatek; Maciej Majka; Joanna Majka; Jolanta Belter; Elżbieta Suchowilska; Urszula Wachowska; Marian Wiwart; Halina Wiśniewska
Triticum genus encloses several tetraploid species that are used as genetic stocks for expanding the genetic variability of wheat (Triticum aestivum L.). Although the T. aestivum (2n = 6x = 42, AABBDD) and T. durum (2n = 4x = 28, AABB) karyotypes were well examined by chromosome staining, Giemsa C-banding and FISH markers, other tetraploids are still poorly characterized. Here, we established and compared the fluorescence in situ hybridization (FISH) patterns on chromosomes of 20 accessions of T. polonicum species using different repetitive sequences from BAC library of wheat ‘Chinese Spring’. The chromosome patterns of Polish wheat were compared to tetraploid (2n = 4x = 28, AABB) Triticum species: T. durum, T. diccocon and T. turanicum, as well. A combination of pTa-86, pTa-535 and pTa-713 probes was the most informative among 6 DNA probes tested. Probe pTa-k374, which is similar to 28S rDNA sequence enabled to distinguish signal size and location differences, as well as rDNA loci elimination. Furthermore, pTa-465 and pTa-k566 probes are helpful for the detection of similar organized chromosomes. The polymorphisms of signals distribution were observed in 2A, 2B, 3B, 5B, 6A and 7B chromosomes. Telomeric region of the short arm of 6B chromosome was the most polymorphic. Our work is novel and contributes to the understanding of T. polonicum genome organization which is essential to develop successful advanced breeding strategies for wheat. Collection and characterization of this germplasm can contribute to the wheat biodiversity safeguard.
Journal of Applied Genetics | 2015
Michał Kwiatek; Maciej Majka; Halina Wiśniewska; Barbara Apolinarska; Jolanta Belter
This paper shows the results of effective uses of a molecular cytogenetics toolbox and molecular marker to transfer leaf rust resistance genes from Aegilops tauschii × Secale cereale (DDRR, 2n = 4x = 28) amphiploid forms to triticale cv. Bogo (AABBRR, 2n = 6x = 42). The molecular markers of resistance genes and in situ hybridization analysis of mitotic metaphase of root meristems confirmed the stable inheritance of chromosome 3D segments carrying Lr32 from the BC2F2 to the BC2F5 generation of (Ae. tauschii × S. cereale) × triticale hybrids. The chromosome pairing analysis during metaphase I of meiosis of BC2F4 and BC2F5 hybrids showed increasing regular bivalent formation of 3D chromosome pairs and decreasing number of univalents in subsequent generations. The results indicate that using amphiploid forms as a bridge between wild and cultivated forms can be a successful technology to transfer the D-genome chromatin carrying leaf rust resistance genes into triticale.
Journal of Applied Genetics | 2016
Michał Kwiatek; Maciej Majka; Aurelia Ślusarkiewicz-Jarzina; Aleksandra Ponitka; Hanna Pudelska; Jolanta Belter; Halina Wiśniewska
The main aim of this work was to induce the chromosome rearrangements between Aegilops ovata (UUMM) and hexaploid triticale (AABBRR) by expression of the gametocidal factor located on the chromosome 4M. The Aegilops ovata × Secale cereale (UUMMRR) amphiploids and triticale ‘Moreno’ were used to produce hybrids by reciprocal crosses. Chromosome dynamics was observed in subsequent generations of hybrids during mitotic metaphase of root meristems and first metaphase of meiosis of pollen mother cells. Chromosomes were identified by genomic in situ hybridisation (GISH) and fluorescence in situ hybridisation (FISH) using pTa71, pTa791, pSc119.2 and pAs1 DNA probes. It has been shown that the origin of the genetic background had an influence on Aegilops chromosome transmission. Moreover, it has been reported that the preferential transmission of chromosome 4M appeared during both androgenesis and gynogenesis. It is also hypothesised that the expression of the triticale Gc gene suppressor had an influence on the semi-fertility of hybrids but did not inhibit the chromosome rearrangements. This paper also describes the double haploid production, which enabled to obtain plants with two identical copies of triticale chromosomes with translocations of Aegilops chromatin segments.
PLOS ONE | 2014
Dawid Perlikowski; Halina Wiśniewska; Tomasz Góral; Michał Kwiatek; Maciej Majka; Arkadiusz Kosmala
Numerous potential components involved in the resistance to Fusarium head blight (FHB) in cereals have been indicated, however, our knowledge regarding this process is still limited and further work is required. Two winter wheat (Triticum aestivum L.) lines differing in their levels of resistance to FHB were analyzed to identify the most crucial proteins associated with resistance in this species. The presented work involved analysis of protein abundance in the kernel bulks of more resistant and more susceptible wheat lines using two-dimensional gel electrophoresis and mass spectrometry identification of proteins, which were differentially accumulated between the analyzed lines, after inoculation with F. culmorum under field conditions. All the obtained two-dimensional patterns were demonstrated to be well-resolved protein maps of kernel proteomes. Although, 11 proteins were shown to have significantly different abundance between these two groups of plants, only two are likely to be crucial and have a potential role in resistance to FHB. Monomeric alpha-amylase and dimeric alpha-amylase inhibitors, both highly accumulated in the more resistant line, after inoculation and in the control conditions. Fusarium pathogens can use hydrolytic enzymes, including amylases to colonize kernels and acquire nitrogen and carbon from the endosperm and we suggest that the inhibition of pathogen amylase activity could be one of the most crucial mechanisms to prevent infection progress in the analyzed wheat line with a higher resistance. Alpha-amylase activity assays confirmed this suggestion as it revealed the highest level of enzyme activity, after F. culmorum infection, in the line more susceptible to FHB.
Journal of Applied Genetics | 2017
Joanna Majka; Maciej Majka; Michał Kwiatek; Halina Wiśniewska
In this paper, we highlight the affinity between the genomes of key representatives of the Pooideae subfamily, revealed at the chromosomal level by genomic in situ hybridization (GISH). The analyses were conducted using labeled probes from each species to hybridize with chromosomes of every species used in this study based on a “round robin” rule. As a result, the whole chromosomes or chromosome regions were distinguished or variable types of signals were visualized to prove the different levels of the relationships between genomes used in this study. We observed the unexpected lack of signals in secondary constrictions of rye (RR) chromosomes probed by triticale (AABBRR) genomic DNA. We have also identified unlabeled chromosome regions, which point to species-specific sequences connected with disparate pathways of chromosome differentiation. Our results revealed a conservative character of coding sequence of 35S rDNA among selected species of the genera Aegilops, Brachypodium, Festuca, Hordeum, Lolium, Secale, and Triticum. In summary, we showed strong relationships in genomic DNA sequences between species which have been previously reported to be phylogenetically distant.
Frontiers in Plant Science | 2016
Dawid Perlikowski; Halina Wiśniewska; Joanna Kaczmarek; Tomasz Góral; Piotr Ochodzki; Michał Kwiatek; Maciej Majka; Adam Augustyniak; Arkadiusz Kosmala
Highlight: The level of pathogen alpha-amylase and plant beta-amylase activities could be components of plant-pathogen interaction associated with the resistance of triticale to Fusarium head blight. Triticale was used here as a model to recognize new components of molecular mechanism of resistance to Fusarium head blight (FHB) in cereals. Fusarium-damaged kernels (FDK) of two lines distinct in levels of resistance to FHB were applied into a proteome profiling using two-dimensional gel electrophoresis (2-DE) to create protein maps and mass spectrometry (MS) to identify the proteins differentially accumulated between the analyzed lines. This proteomic research was supported by a measurement of alpha- and beta-amylase activities, mycotoxin content, and fungal biomass in the analyzed kernels. The 2-DE analysis indicated a total of 23 spots with clear differences in a protein content between the more resistant and more susceptible triticale lines after infection with Fusarium culmorum. A majority of the proteins were involved in a cell carbohydrate metabolism, stressing the importance of this protein group in a plant response to Fusarium infection. The increased accumulation levels of different isoforms of plant beta-amylase were observed for a more susceptible triticale line after inoculation but these were not supported by a total level of beta-amylase activity, showing the highest value in the control conditions. The more resistant line was characterized by a higher abundance of alpha-amylase inhibitor CM2 subunit and simultaneously a lower activity of alpha-amylase after inoculation. We suggest that the level of pathogen alpha-amylase and plant beta-amylase activities could be components of plant-pathogen interaction associated with the resistance of triticale to FHB.
Frontiers in Plant Science | 2017
Michał Kwiatek; Halina Wiśniewska; Aurelia Ślusarkiewicz-Jarzina; Joanna Majka; Maciej Majka; Jolanta Belter; Hanna Pudelska
Segregation distorters are curious, evolutionarily selfish genetic elements, which distort Mendelian segregation in their favor at the expense of others. Those agents include gametocidal factors (Gc), which ensure their preferential transmission by triggering damages in cells lacking them via chromosome break induction. Hence, we hypothesized that the gametocidal system can be adapted for chromosome manipulations between Triticum and Secale chromosomes in hexaploid triticale (×Triticosecale Wittmack). In this work we studied the little-known gametocidal action of a Gc factor located on Aegilops geniculata Roth chromosome 4Mg. Our results indicate that the initiation of the gametocidal action takes place at anaphase II of meiosis of pollen mother cells. Hence, we induced androgenesis at postmeiotic pollen divisions (via anther cultures) in monosomic 4Mg addition plants of hexaploid triticale (AABBRR) followed by production of doubled haploids, to maintain the chromosome aberrations caused by the gametocidal action. This approach enabled us to obtain a large number of plants with two copies of particular chromosome translocations, which were identified by the use of cytomolecular methods. We obtained 41 doubled haploid triticale lines and 17 of them carried chromosome aberrations that included plants with the following chromosome sets: 40T+Dt2RS+Dt2RL (5 lines), 40T+N2R (1), 38T+D4RS.4BL (3), 38T+D5BS-5BL.5RL (5), and 38T+D7RS.3AL (3). The results show that the application of the Gc mechanism in combination with production of doubled haploid lines provides a sufficiently large population of homozygous doubled haploid individuals with two identical copies of translocation chromosomes. In our opinion, this approach will be a valuable tool for the production of novel plant material, which could be used for gene tracking studies, genetic mapping, and finally to enhance the diversity of cereals.
Breeding Science | 2016
Halina Wiśniewska; Maria Surma; Karolina Krystkowiak; Tadeusz Adamski; Anetta Kuczyńska; Piotr Ogrodowicz; Krzysztof Mikołajczak; Jolanta Belter; Maciej Majka; Zygmunt Kaczmarek; Paweł Krajewski; Aneta Sawikowska; Leszek Lenc; Anna Baturo-Cieśniewska; Aleksander Łukanowski; Tomasz Góral; Czesław Sadowski
Fusarium head blight (FHB), caused by the fungal plant pathogen Fusarium, is a fungal disease that occurs in wheat and can cause significant yield and grain quality losses. The present paper examines variation in the resistance of spring wheat lines derived from a cross between Zebra and Saar cultivars. Experiments covering 198 lines and parental cultivars were conducted in three years, in which inoculation with Fusarium culmorum was applied. Resistance levels were estimated by scoring disease symptoms on kernels. In spite of a similar reaction of parents to F. culmorum infection, significant differentiation between lines was found in all the analyzed traits. Seven molecular markers selected as linked to FHB resistance QTLs gave polymorphic products for Zebra and Saar: Xgwm566, Xgwm46, Xgwm389, Xgwm533, Xgwm156, Xwmc238, and Xgwm341. Markers Xgwm389 and Xgwm533 were associated with the rate of Fusarium-damaged kernels (FDK) as well as with kernel weight per spike and thousand kernel weight in control plants. Zebra allele of marker Xwmc238 increased kernel weight per spike and thousand kernel weight both in control and infected plants, whereas Zebra allele of marker Xgwm566 reduced the percentage of FDK and simultaneously reduced the thousand kernel weight in control and infected plants.
Frontiers in Plant Science | 2017
Maciej Majka; Michał Kwiatek; Joanna Majka; Halina Wiśniewska
Aegilops tauschii (2n = 2x = 14) is a diploid wild species which is reported as a donor of the D-genome of cultivated bread wheat. The main goal of this study was to examine the differences and similarities in chromosomes organization among accessions of Ae. tauschii with geographically diversed origin, which is believed as a potential source of genes, especially determining resistance to fungal diseases (i.e., leaf rust and powdery mildew) for breeding of cereals. We established and compared the fluorescence in situ hybridization patterns of 21 accessions of Ae. tauschii using various repetitive sequences mainly from the BAC library of wheat cultivar Chinese Spring. Results obtained for Ae. tauschii chromosomes revealed many similarities between analyzed accessions, however, some hybridization patterns were specific for accessions, which become from cognate regions of the World. The most noticeable differences were observed for accessions from China which were characterized by presence of distinct signals of pTa-535 in the interstitial region of chromosome 3D, less intensity of pTa-86 signals in chromosome 2D, as well as lack of additional signals of pTa-86 in chromosomes 1D, 5D, or 6D. Ae. tauschii of Chinese origin appeared homogeneous and separate from landraces that originated in western Asia. Ae. tauschii chromosomes showed similar hybridization patterns to wheat D-genome chromosomes, but some differences were also observed among both species. What is more, we identified reciprocal translocation between short arm of chromosome 1D and long arm of chromosome 7D in accession with Iranian origin. High polymorphism between analyzed accessions and extensive allelic variation were revealed using molecular markers associated with resistance genes. Majority of the markers localized in chromosomes 1D and 2D showed the diversity of banding patterns between accessions. Obtained results imply, that there is a moderate or high level of polymorphism in the genome of Ae. tauschii determined by a geographical origin, which we proved by cytogenetic and molecular markers analysis. Therefore, selected accessions might constitute an accessible source of variation for improvement of Triticeae species like wheat and triticale.