Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jolanta M. Topczewska is active.

Publication


Featured researches published by Jolanta M. Topczewska.


Nature Medicine | 2006

Embryonic and tumorigenic pathways converge via Nodal signaling: role in melanoma aggressiveness

Jolanta M. Topczewska; Lynne-Marie Postovit; Naira V. Margaryan; Anthony Sam; Angela R. Hess; William W. Wheaton; Brian J. Nickoloff; Jacek Topczewski; Mary J.C. Hendrix

Bidirectional cellular communication is integral to both cancer progression and embryological development. In addition, aggressive tumor cells are phenotypically plastic, sharing many properties with embryonic cells. Owing to the similarities between these two types of cells, the developing zebrafish can be used as a biosensor for tumor-derived signals. Using this system, we show that aggressive melanoma cells secrete Nodal (a potent embryonic morphogen) and consequently can induce ectopic formation of the embryonic axis. We further show that Nodal is present in human metastatic tumors, but not in normal skin, and thus may be involved in melanoma pathogenesis. Inhibition of Nodal signaling reduces melanoma cell invasiveness, colony formation and tumorigenicity. Nodal inhibition also promotes the reversion of melanoma cells toward a melanocytic phenotype. These data suggest that Nodal signaling has a key role in melanoma cell plasticity and tumorigenicity, thereby providing a previously unknown molecular target for regulating tumor progression.


Blood | 2012

miR-27b controls venous specification and tip cell fate

Dauren Biyashev; Dorina Veliceasa; Jacek Topczewski; Jolanta M. Topczewska; Igor V. Mizgirev; Elena Vinokour; Alagarsamy Lakku Reddi; Jonathan D. Licht; Sergei Revskoy; Olga V. Volpert

We discovered that miR-27b controls 2 critical vascular functions: it turns the angiogenic switch on by promoting endothelial tip cell fate and sprouting and it promotes venous differentiation. We have identified its targets, a Notch ligand Delta-like ligand 4 (Dll4) and Sprouty homologue 2 (Spry2). miR-27b knockdown in zebrafish and mouse tissues severely impaired vessel sprouting and filopodia formation. Moreover, miR-27b was necessary for the formation of the first embryonic vein in fish and controlled the expression of arterial and venous markers in human endothelium, including Ephrin B2 (EphB2), EphB4, FMS-related tyrosine kinase 1 (Flt1), and Flt4. In zebrafish, Dll4 inhibition caused increased sprouting and longer intersegmental vessels and exacerbated tip cell migration. Blocking Spry2 caused premature vessel branching. In contrast, Spry2 overexpression eliminated the tip cell branching in the intersegmental vessels. Blockade of Dll4 and Spry2 disrupted arterial specification and augmented the expression of venous markers. Blocking either Spry2 or Dll4 rescued the miR-27b knockdown phenotype in zebrafish and in mouse vascular explants, pointing to essential roles of these targets downstream of miR-27b. Our study identifies critical role of miR-27b in the control of endothelial tip cell fate, branching, and venous specification and determines Spry2 and Dll4 as its essential targets.


Developmental Dynamics | 2009

Craniofacial skeletal defects of adult zebrafish Glypican 4 (knypek) mutants

Elizabeth E. LeClair; Stephanie R. Mui; Angela Huang; Jolanta M. Topczewska; Jacek Topczewski

The heparan sulfate proteoglycan Glypican 4 (Gpc4) is part of the Wnt/planar cell polarity pathway, which is required for convergence and extension during zebrafish gastrulation. To observe Glypican 4‐deficient phenotypes at later stages, we rescued gpc4−/− (knypek) homozygotes and raised them for more than one year. Adult mutants showed diverse cranial malformations of both dermal and endochondral bones, ranging from shortening of the rostral‐most skull to loss of the symplectic. Additionally, the adult palatoquadrate cartilage was disorganized, with abnormal chondrocyte orientation. To understand how the palatoquadrate cartilage normally develops, we examined a juvenile series of wild type and mutant specimens. This identified two novel domains of elongated chondrocytes in the larval palatoquadrate, which normally form prior to endochondral ossification. In contrast, gpc4−/− larvae never form these domains, suggesting a failure of chondrocyte orientation, though not differentiation. Our findings implicate Gpc4 in the regulation of zebrafish cartilage and bone morphogenesis. Developmental Dynamics 238:2550–2563, 2009.


Development | 2012

A zebrafish Notum homolog specifically blocks the Wnt/β-catenin signaling pathway

G. Parker Flowers; Jolanta M. Topczewska; Jacek Topczewski

Multiple developmental processes require tightly controlled Wnt signaling, and its misregulation leads to congenital abnormalities and diseases. Glypicans are extracellular proteins that modulate the Wnt pathway. In addition to interacting with Wnts, these glycosophosphotidylinositol (GPI)-anchored, heparan-sulfate proteoglycans bind ligands of several other signaling pathways in both vertebrates and invertebrates. In Drosophila, Notum, a secreted α/β-hydrolase, antagonizes the signaling of the prototypical Wnt Wingless (Wg), by releasing glypicans from the cell surface. Studies of mammalian Notum indicate promiscuous target specificity in cell culture, but the role of Notum in vertebrate development has not been studied. Our work shows that zebrafish Notum 1a, an ortholog of mammalian Notum, contributes to a self-regulatory loop that restricts Wnt/β-catenin signaling. Notum 1a does not interact with Glypican 4, an essential component of the Wnt/planar cell polarity (PCP) pathway. Our results suggest a surprising specific role of Notum in the developing vertebrate embryo.


Developmental Biology | 2008

Hh and Wnt signaling regulate formation of olig2+ neurons in the zebrafish cerebellum

Karen A. McFarland; Jolanta M. Topczewska; Gilbert Weidinger; Richard I. Dorsky; Bruce Appel

The cerebellum, which forms from anterior hindbrain, coordinates motor movements and balance. Sensory input from the periphery is relayed and modulated by cerebellar interneurons, which are organized in layers. The mechanisms that specify the different neurons of the cerebellum and direct its layered organization remain poorly understood. Drawing from investigations of spinal cord, we hypothesized that the embryonic cerebellum is patterned on the dorsoventral axis by opposing morphogens. We tested this using zebrafish. Here we show that expression of olig2, which encodes a bHLH transcription factor, marks a distinct subset of neurons with similarities to eurydendroid neurons, the principal efferent neurons of the teleost cerebellum. In combination with other markers, olig2 reveals a dorsoventral organization of cerebellar neurons in embryos. Disruption of Hedgehog signaling, which patterns the ventral neural tube, produced a two-fold increase in the number of olig2(+) neurons. By contrast, olig2(+) neurons did not develop in embryos deficient for Wnt signaling, which patterns dorsal neural tube, nor did they develop in embryos deficient for both Hedgehog and Wnt signaling. Our data indicate that Hedgehog and Wnt work in opposition across the dorsoventral axis of the cerebellum to regulate formation of olig2(+) neurons. Specifically, we propose that Hedgehog limits the range of Wnt signaling, which is necessary for olig2(+) neuron development.


Mechanisms of Development | 2001

Sequence and expression of zebrafish foxc1a and foxc1b, encoding conserved forkhead/winged helix transcription factors.

Jolanta M. Topczewska; Jacek Topczewski; Lilianna Solnica-Krezel; Brigid L.M. Hogan

Mouse Foxc1 (previously Mf1) is a member of the conserved forkhead/winged helix transcription factor gene family. It is expressed in many mesodermal tissues including paraxial mesoderm of the trunk and head, prechondrogenic mesenchyme, branchial arches and developing kidney. Homozygous mutants die perinatally with hydrocephalus and skeletal, cardiovascular, ocular and genitourinary defects. Here, we report the cloning and expression of two zebrafish foxc1 homologues, foxc1a and foxc1b. During gastrulation and somitogenesis both genes have similar expression patterns in the hypoblast, paraxial and presomitic mesoderm, somites and trunk adaxial cells. Expression in the somites is downregulated as they differentiate, but is maintained in the sclerotome. Later, some differences in expression pattern emerge. For example, only foxc1a transcripts are detected in the pronephros primodia and in the head mesoderm around the eyes, while only foxc1b is expressed in the pharyngeal arches and pectoral fins. Early expression of foxc1a in the paraxial mesoderm is modified in chordino, swirl, somitabun, and spadetail mutants.


Mechanisms of Development | 2015

A role of glypican4 and wnt5b in chondrocyte stacking underlying craniofacial cartilage morphogenesis.

Barbara E. Sisson; Rodney M. Dale; Stephanie R. Mui; Jolanta M. Topczewska; Jacek Topczewski

The Wnt/Planar Cell Polarity (PCP) pathway controls cell morphology and behavior during animal development. Several zebrafish mutants were identified as having perturbed Wnt/PCP signaling. Many of these mutants have defects in craniofacial formation. To better understand the role that Wnt/PCP plays in craniofacial development we set out to identify which of the mutants, known to be associated with the Wnt/PCP pathway, perturb head cartilage formation by disrupting chondrocyte morphology. Here we demonstrate that while vang-like 2 (vangl2), wnt11 and scribbled (scrib) mutants have severe craniofacial morphogenesis defects they do not display the chondrocyte stacking and intercalation problems seen in glypican 4 (gpc4) and wnt5b mutants. The function of Gpc4 or Wnt5b appears to be important for chondrocyte organization, as the neural crest in both mutants is specified, undergoes migration, and differentiates into the same number of cells to compose the craniofacial cartilage elements. We demonstrate that Gpc4 activity is required cell autonomously in the chondrocytes and that the phenotype of single heterozygous mutants is slightly enhanced in embryos double heterozygous for wnt5b and gpc4. This data suggests a novel mechanism for Wnt5b and Gpc4 regulation of chondrocyte behavior that is independent of the core Wnt/PCP molecules and differs from their collaborative action of controlling cell movements during gastrulation.


Gene Expression Patterns | 2003

Developmentally regulated expression of two members of the Nrarp family in zebrafish

Jolanta M. Topczewska; Jacek Topczewski; Alena Szostak; Lilianna Solnica-Krezel; Brigid L.M. Hogan

Delta-Notch signaling is essential for somitogenesis in vertebrate embryos. In a search for genes that control somite formation in zebrafish we have identified two paralogues encoding proteins related to Nrarp (Notch regulated ankyrin repeat protein). Zebrafish nrarp-a and-b encode small proteins with two ankyrin repeat domains. Here, we report the expression patterns of both genes in normal and mutant embryos.


PLOS ONE | 2016

The morphogenesis of cranial sutures in zebrafish

Jolanta M. Topczewska; Ramy A. Shoela; Joanna P. Tomaszewski; Rupa Mirmira; Arun K. Gosain

Using morphological, histological, and TEM analyses of the cranium, we provide a detailed description of bone and suture growth in zebrafish. Based on expression patterns and localization, we identified osteoblasts at different degrees of maturation. Our data confirm that, unlike in humans, zebrafish cranial sutures maintain lifelong patency to sustain skull growth. The cranial vault develops in a coordinated manner resulting in a structure that protects the brain. The zebrafish cranial roof parallels that of higher vertebrates and contains five major bones: one pair of frontal bones, one pair of parietal bones, and the supraoccipital bone. Parietal and frontal bones are formed by intramembranous ossification within a layer of mesenchyme positioned between the dermal mesenchyme and meninges surrounding the brain. The supraoccipital bone has an endochondral origin. Cranial bones are separated by connective tissue with a distinctive architecture of osteogenic cells and collagen fibrils. Here we show RNA in situ hybridization for col1a1a, col2a1a, col10a1, bglap/osteocalcin, fgfr1a, fgfr1b, fgfr2, fgfr3, foxq1, twist2, twist3, runx2a, runx2b, sp7/osterix, and spp1/ osteopontin, indicating that the expression of genes involved in suture development in mammals is preserved in zebrafish. We also present methods for examining the cranium and its sutures, which permit the study of the mechanisms involved in suture patency as well as their pathological obliteration. The model we develop has implications for the study of human disorders, including craniosynostosis, which affects 1 in 2,500 live births.


Experimental Dermatology | 2018

Digital analysis yields more reliable and accurate measures of dermal and epidermal thickness in histologically processed specimens compared to traditional methods

Sergey Y. Turin; Joanna K. Ledwon; Hanna Bae; Adrian Buganza-Tepole; Jolanta M. Topczewska; Arun K. Gosain

Changes in the thickness of the dermis and epidermis have been described in the scenario of tissue expansion as well as inflammatory skin processes (psoriasis, contact hypersensitivity and so on). These changes have previously been quantified using ocular micrometers to obtain and then average a limited number of spot measurements, leading to suboptimal accuracy. We describe a rapid method of using freely available ImageJ software to analyze digitized images of fixed skin specimens. By determining the cross‐sectional area and surface length of a skin layer, a simple calculation produces more accurate and reproducible measurements of its thickness compared to historical methods, with excellent inter‐rater reliability.

Collaboration


Dive into the Jolanta M. Topczewska's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge