Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jolena N. Waddell is active.

Publication


Featured researches published by Jolena N. Waddell.


PLOS ONE | 2010

Dlk1 is necessary for proper skeletal muscle development and regeneration.

Jolena N. Waddell; Peijing Zhang; Yefei Wen; Sanjay K. Gupta; Aleksey Yevtodiyenko; Jennifer V. Schmidt; Christopher A. Bidwell; Ashok Kumar; Shihuan Kuang

Delta-like 1homolog (Dlk1) is an imprinted gene encoding a transmembrane protein whose increased expression has been associated with muscle hypertrophy in animal models. However, the mechanisms by which Dlk1 regulates skeletal muscle plasticity remain unknown. Here we combine conditional gene knockout and over-expression analyses to investigate the role of Dlk1 in mouse muscle development, regeneration and myogenic stem cells (satellite cells). Genetic ablation of Dlk1 in the myogenic lineage resulted in reduced body weight and skeletal muscle mass due to reductions in myofiber numbers and myosin heavy chain IIB gene expression. In addition, muscle-specific Dlk1 ablation led to postnatal growth retardation and impaired muscle regeneration, associated with augmented myogenic inhibitory signaling mediated by NF-κB and inflammatory cytokines. To examine the role of Dlk1 in satellite cells, we analyzed the proliferation, self-renewal and differentiation of satellite cells cultured on their native host myofibers. We showed that ablation of Dlk1 inhibits the expression of the myogenic regulatory transcription factor MyoD, and facilitated the self-renewal of activated satellite cells. Conversely, Dlk1 over-expression inhibited the proliferation and enhanced differentiation of cultured myoblasts. As Dlk1 is expressed at low levels in satellite cells but its expression rapidly increases upon myogenic differentiation in vitro and in regenerating muscles in vivo, our results suggest a model in which Dlk1 expressed by nascent or regenerating myofibers non-cell autonomously promotes the differentiation of their neighbor satellite cells and therefore leads to muscle hypertrophy.


BMC Genomics | 2010

A gene network switch enhances the oxidative capacity of ovine skeletal muscle during late fetal development

Keren Byrne; Tony Vuocolo; Cedric Gondro; Jason D. White; Noelle E. Cockett; Tracy Hadfield; Christopher A. Bidwell; Jolena N. Waddell; Ross L. Tellam

BackgroundThe developmental transition between the late fetus and a newborn animal is associated with profound changes in skeletal muscle function as it adapts to the new physiological demands of locomotion and postural support against gravity. The mechanisms underpinning this adaption process are unclear but are likely to be initiated by changes in hormone levels. We tested the hypothesis that this developmental transition is associated with large coordinated changes in the transcription of skeletal muscle genes.ResultsUsing an ovine model, transcriptional profiling was performed on Longissimus dorsi skeletal muscle taken at three fetal developmental time points (80, 100 and 120 d of fetal development) and two postnatal time points, one approximately 3 days postpartum and a second at 3 months of age. The developmental time course was dominated by large changes in expression of 2,471 genes during the interval between late fetal development (120 d fetal development) and 1-3 days postpartum. Analysis of the functions of genes that were uniquely up-regulated in this interval showed strong enrichment for oxidative metabolism and the tricarboxylic acid cycle indicating enhanced mitochondrial activity. Histological examination of tissues from these developmental time points directly confirmed a marked increase in mitochondrial activity between the late fetal and early postnatal samples. The promoters of genes that were up-regulated during this fetal to neonatal transition were enriched for estrogen receptor 1 and estrogen related receptor alpha cis-regulatory motifs. The genes down-regulated during this interval highlighted de-emphasis of an array of functions including Wnt signaling, cell adhesion and differentiation. There were also changes in gene expression prior to this late fetal - postnatal transition and between the two postnatal time points. The former genes were enriched for functions involving the extracellular matrix and immune response while the latter principally involved functions associated with transcriptional regulation of metabolic processes.ConclusionsIt is concluded that during late skeletal muscle development there are substantial and coordinated changes in the transcription of a large number of genes many of which are probably triggered by increased estrogen levels. These changes probably underpin the adaption of muscle to new physiological demands in the postnatal environment.


Animal Genetics | 2014

New insights into polar overdominance in callipyge sheep

Christopher A. Bidwell; Jolena N. Waddell; Tasia M. Taxis; Hui Yu; Ross L. Tellam; Mike K. Neary; Noelle E. Cockett

The callipyge phenotype in sheep involves substantial postnatal muscle hypertrophy and other changes to carcass composition. A single nucleotide polymorphism in the DLK1-DIO3 imprinted gene cluster alters gene expression of the paternal allele-specific protein-coding genes and several maternal allele-specific long noncoding RNA and microRNA when the mutation is inherited in cis. The inheritance pattern of the callipyge phenotype is polar overdominant because muscle hypertrophy only occurs in heterozygous animals that inherit a normal maternal allele and the callipyge SNP on the paternal allele (+/C). We examined the changes of gene expression of four major transcripts from the DLK1-DIO3 cluster and four myosin isoforms during the development of muscle hypertrophy in the semimembranosus as well as in the supraspinatus that does not undergo hypertrophy. The homozygous (C/C) animals had an intermediate gene expression pattern for the paternal allele-specific genes and two myosin isoforms, indicating a biological activity that was insufficient to change muscle mass. Transcriptome analysis was conducted by RNA sequencing in the four callipyge genotypes. The data show that homozygous animals (C/C) have lower levels of gene expression at many loci relative to the other three genotypes. A number of the downregulated genes are putative targets of the maternal allele-specific microRNA with gene ontology, indicating regulatory and cell signaling functions. These results suggest that the trans-effect of the maternal noncoding RNA and associated miRNA is to stabilize the expression of a number of regulatory genes at a functional, but low level to make the myofibers of homozygous (C/C) lambs less responsive to hypertrophic stimuli of the paternal allele-specific genes.


Journal of Animal Science | 2013

Supplemental vitamin D3 and zilpaterol hydrochloride. II. Effect on calcium concentration, muscle fiber type, and calpain gene expression of feedlot steers.

K. T. Korn; R. P. Lemenager; M. C. Claeys; Jolena N. Waddell; M. A. Engstrom; J. P. Schoonmaker

Two hundred and ten Angus × Simmental steers (initial BW 314 ± 11 kg) were separated into heavy and light BW blocks and allotted evenly by BW to 6 treatments (3 heavy and 2 light pens per treatment) to determine the effect of supplemental vitamin D3: 0 IU (no D), 250,000 IU for 165 d (long-term D), or 5 × 10(6) IU for 10 d (short-term D) on plasma and muscle calcium concentrations and gene expression in steers fed either 0 (NZ) or 8.38 mg/kg (ZH) zilpaterol hydrochloride (ZH) daily for 21 d. Placebo or ZH was added to the diet 24 d, and short-term D was added 13 d before slaughter. Treatments were removed from all diets 3 d before slaughter. Plasma total calcium (Ca(2+)) was determined at study initiation, start of ZH and short-term D feedings, and at vitamin D3 and ZH withdrawal. Both plasma total and ionic Ca(2+) were determined when animals were sent to harvest. Longissimus muscle total and ionic Ca(2+) were determined in meat aged 7 and 4 d postmortem, respectively. When ZH was fed, long-term D decreased plasma total Ca(2+) at slaughter (P < 0.04). Short-term D increased (P < 0.01) plasma total and ionic Ca(2+) at slaughter regardless of ZH inclusion in the diet. Long- and short-term D, with or without ZH, did not affect (P > 0.28) LM total Ca(2+); however, both long- and short-term D increased LM ionic Ca(2+) when ZH was not fed (P < 0.01). Long-term D reduced LM ionic Ca(2+) when ZH was fed (P < 0.02). Neither long- nor short-term D affected PPARα or δ gene expression (P = 0.19) whether or not ZH was fed. Expression of MYH1 and 2A (P < 0.05) but not 2X (P = 0.21) was decreased in steers fed ZH. Long-term D had no effect on MYH2A expression (P = 0.21). Short-term D increased MYH2A expression when ZH was not fed (P < 0.03). Calpain mRNA tended to be lower in steers fed ZH (P = 0.09), but was not affected by long- or short-term D regardless of whether or not ZH was fed (P = 0.39). Expression of calpastatin did not differ with vitamin D supplementation (P = 0.35). In conclusion, ZH decreased oxidative myosin expression, and when combined with long-term D, ZH decreased LM ionic Ca(2+). Moreover, vitamin D3 supplementation did not increase calpain mRNA. These results help explain why vitamin D3 does not improve tenderness in steers fed ZH.


PLOS ONE | 2014

Park7 expression influences myotube size and myosin expression in muscle.

Hui Yu; Jolena N. Waddell; Shihuan Kuang; Christopher A. Bidwell

Callipyge sheep exhibit postnatal muscle hypertrophy due to the up-regulation of DLK1 and/or RTL1. The up-regulation of PARK7 was identified in hypertrophied muscles by microarray analysis and further validated by quantitative PCR. The expression of PARK7 in hypertrophied muscle of callipyge lambs was confirmed to be up-regulated at the protein level. PARK7 was previously identified to positively regulate PI3K/AKT pathway by suppressing the phosphatase activity of PTEN in mouse fibroblasts. The purpose of this study was to investigate the effects of PARK7 in muscle growth and protein accretion in response to IGF1. Primary myoblasts isolated from Park7 (+/+) and Park7 (−/−) mice were used to examine the effect of differential expression of Park7. The Park7 (+/+) myotubes had significantly larger diameters and more total sarcomeric myosin expression than Park7 (−/−) myotubes. IGF1 treatment increased the mRNA abundance of Myh4, Myh7 and Myh8 between 20-40% in Park7 (+/+) myotubes relative to Park7 (−/−). The level of AKT phosphorylation was increased in Park7 (+/+) myotubes at all levels of IGF1 supplementation. After removal of IGF1, the Park7 (+/+) myotubes maintained higher AKT phosphorylation through 3 hours. PARK7 positively regulates the PI3K/AKT pathway by inhibition of PTEN phosphatase activity in skeletal muscle. The increased PARK7 expression can increase protein synthesis and result in myotube hypertrophy. These results support the hypothesis that elevated expression of PARK7 in callipyge muscle would increase levels of AKT activity to cause hypertrophy in response to the normal IGF1 signaling in rapidly growing lambs. Increasing expression of PARK7 could be a novel mechanism to increase protein accretion and muscle growth in livestock or help improve muscle mass with disease or aging.


Meat Science | 2018

A new insight into meat toughness of callipyge lamb loins - The relevance of anti-apoptotic systems to decreased proteolysis

Traci Cramer; Moriah Penick; Jolena N. Waddell; C. Bidwell; Yuan H. Brad Kim

The objective of this study was to determine associations of small heat shock proteins (sHSPs) in tenderness development of loins from callipyge and normal genotype lambs. Loins (M. longissimus lumborum) from sixteen lambs across four genotypes were collected throughout 9 days of postmortem aging. The loins from callipyge lambs had more intact desmin and troponin T throughout aging periods, as well as less μ-calpain autolysis and more calpastatin compared to loins from other genotypes (P < 0.05). Delayed onset of apoptosis was found in the callipyge loins indicated by less cytochrome c and more inactive procaspase-3 compared to normal lamb loins (P < 0.05). Less degraded HSP27 was also consistently found in the callipyge loins compared with loins from normal lambs (P < 0.001). The results found up-regulation of anti-apoptotic activities coincided with toughness in callipyge loins, which suggest apoptosis is likely involved in postmortem proteolysis and subsequent meat tenderization.


BMC Genomics | 2018

Identification of genes directly responding to DLK1 signaling in Callipyge sheep

Hui Yu; Jolena N. Waddell; Shihuan Kuang; Ross L. Tellam; Noelle E. Cockett; Christopher A. Bidwell

BackgroundIn food animal agriculture, there is a need to identify the mechanisms that can improve the efficiency of muscle growth and protein accretion. Callipyge sheep provide excellent machinery since the up-regulation of DLK1 and RTL1 results in extreme postnatal muscle hypertrophy in distinct muscles. The aim of this study is to distinguish the genes that directly respond to DLK1 and RTL1 signaling from the genes that change as the result of muscle specific effects.ResultsThe quantitative PCR results indicated that DLK1 expression was significantly increased in hypertrophied muscles but not in non-hypertrophied muscles. However, RTL1 was up-regulated in both hypertrophied and non-hypertrophied muscles. Five genes, including PARK7, DNTTIP1, SLC22A3, METTL21E and PDE4D, were consistently co-expressed with DLK1, and therefore were possible transcriptional target genes responding to DLK1 signaling. Treatment of myoblast and myotubes with DLK1 protein induced an average of 1.6-fold and 1.4-fold increase in Dnttip1 and Pde4d expression respectively. Myh4 expression was significantly elevated in DLK1-treated myotubes, whereas the expression of Mettl21e was significantly increased in the DLK1-treated myoblasts but reduced in DLK1-treated myotubes. DLK1 treatment had no impact on Park7 expression. In addition, Park7 and Dnttip1 increased Myh4 and decreased Myh7 promoter activity, resemble to the effects of Dlk1. In contrast, expression of Mettl21e increased Myh7 and decreased Myh4 luciferase activity.ConclusionThe study provided additional supports that RTL1 alone was insufficient to induce muscle hypertrophy and concluded that DLK1 was likely the primary effector of the hypertrophy phenotype. The results also suggested that DNTTIP1 and PDE4D were secondary effector genes responding to DLK1 signaling resulting in muscle fiber switch and muscular hypertrophy in callipyge lamb.


Urologic Oncology-seminars and Original Investigations | 2013

DNMT1: An emerging target in the treatment of invasive urinary bladder cancer

Deepika Dhawan; José A. Ramos-Vara; Noah M. Hahn; Jolena N. Waddell; Gayla R. Olbricht; Rong Zheng; Jane C. Stewart; Deborah W. Knapp


Biology of Reproduction | 2007

EFFECT OF PUBERTY AND FOLLICLE SIZE ON GENE EXPRESSION IN PORCINE OOCYTES

Melissa Paczkowski; C. Bidwell; Bruce A. Craig; Alex Lipka; Jolena N. Waddell; Rebecca L. Krisher


Animal Science Journal | 2017

Effect of supplemental β‐carotene compared to retinyl palmitate on fatty acid profile and expression of mRNA from genes involved in vitamin A metabolism in beef feedlot cattle

Kaitlin N. Condron; Jolena N. Waddell; Matt C. Claeys; R. P. Lemenager; J. P. Schoonmaker

Collaboration


Dive into the Jolena N. Waddell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ross L. Tellam

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Hui Yu

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge