Christopher A. Bidwell
Purdue University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher A. Bidwell.
PLOS ONE | 2010
Jolena N. Waddell; Peijing Zhang; Yefei Wen; Sanjay K. Gupta; Aleksey Yevtodiyenko; Jennifer V. Schmidt; Christopher A. Bidwell; Ashok Kumar; Shihuan Kuang
Delta-like 1homolog (Dlk1) is an imprinted gene encoding a transmembrane protein whose increased expression has been associated with muscle hypertrophy in animal models. However, the mechanisms by which Dlk1 regulates skeletal muscle plasticity remain unknown. Here we combine conditional gene knockout and over-expression analyses to investigate the role of Dlk1 in mouse muscle development, regeneration and myogenic stem cells (satellite cells). Genetic ablation of Dlk1 in the myogenic lineage resulted in reduced body weight and skeletal muscle mass due to reductions in myofiber numbers and myosin heavy chain IIB gene expression. In addition, muscle-specific Dlk1 ablation led to postnatal growth retardation and impaired muscle regeneration, associated with augmented myogenic inhibitory signaling mediated by NF-κB and inflammatory cytokines. To examine the role of Dlk1 in satellite cells, we analyzed the proliferation, self-renewal and differentiation of satellite cells cultured on their native host myofibers. We showed that ablation of Dlk1 inhibits the expression of the myogenic regulatory transcription factor MyoD, and facilitated the self-renewal of activated satellite cells. Conversely, Dlk1 over-expression inhibited the proliferation and enhanced differentiation of cultured myoblasts. As Dlk1 is expressed at low levels in satellite cells but its expression rapidly increases upon myogenic differentiation in vitro and in regenerating muscles in vivo, our results suggest a model in which Dlk1 expressed by nascent or regenerating myofibers non-cell autonomously promotes the differentiation of their neighbor satellite cells and therefore leads to muscle hypertrophy.
Gene | 1998
Karen L. Houseknecht; Christopher A. Bidwell; Carla P. Portocarrero; Michael E. Spurlock
Peroxisome proliferator-activated receptor gamma (PPARgamma) is a member of the PPAR subfamily of nuclear hormone receptors. In rodents and humans, expression of PPARgamma is predominantly found in adipose tissue where it regulates adipocyte differentiation and the expression of multiple adipocyte genes. The primary aim of this work was to clone the porcine PPARgamma cDNA and examine the regulation of gene expression in porcine subcutaneous adipose tissue. The porcine PPARgamma gene encodes a 1.8-kb mRNA transcript and shares 99, 96 and 97% amino acid sequence identity to the human, mouse and cow PPARgamma molecules, respectively. Both isoforms of PPARgamma (gamma1 and gamma2) are highly expressed in porcine adipose tissue. The gamma2 isoform is expressed in low abundance in porcine spleen, whereas the gamma1 isoform is highly expressed in spleen and lung and at a low abundance in several other tissues. Western blot analysis confirmed a high level of PPARgamma protein expression in porcine adipose tissue compared to other tissues. Both caloric restriction and fasting significantly reduced PPARgamma2 but not gamma1 mRNA and PPARgamma protein abundance in subcutaneous adipose tissue compared to ad-libitum fed controls. We provide the first evidence that PPARgamma is abundantly expressed in porcine subcutaneous adipose tissue, and that expression is regulated by caloric intake. Thus, PPARgamma may play an important role in adipogenesis and hormone action in porcine adipocytes.
Genetics Selection Evolution | 2005
Noelle E. Cockett; Maria Smit; Christopher A. Bidwell; Karin Segers; Tracy L Hadfield; G. D. Snowder; Michel Georges; Carole Charlier
Genetic strategies to improve the profitability of sheep operations have generally focused on traits for reproduction. However, natural mutations exist in sheep that affect muscle growth and development, and the exploitation of these mutations in breeding strategies has the potential to significantly improve lamb-meat quality. The best-documented mutation for muscle development in sheep is callipyge (CLPG), which causes a postnatal muscle hypertrophy that is localized to the pelvic limbs and loin. Enhanced skeletal muscle growth is also observed in animals with the Carwell (or rib-eye muscling) mutation, and a double-muscling phenotype has been documented for animals of the Texel sheep breed. However, the actual mutations responsible for these muscular hypertrophy phenotypes in sheep have yet to be identified, and further characterization of the genetic basis for these phenotypes will provide insight into the biological control of muscle growth and body composition.
BMC Biology | 2004
Christopher A. Bidwell; Lauren N Kramer; Allison C Perkins; Tracy Hadfield; Diane E. Moody; Noelle E. Cockett
BackgroundThe callipyge mutation is located within an imprinted gene cluster on ovine chromosome 18. The callipyge trait exhibits polar overdominant inheritance due to the fact that only heterozygotes inheriting a mutant paternal allele (paternal heterozygotes) have a phenotype of muscle hypertrophy, reduced fat and a more compact skeleton. The mutation is a single A to G transition in an intergenic region that results in the increased expression of several genes within the imprinted cluster without changing their parent-of-origin allele-specific expression.ResultsThere was a significant effect of genotype (p < 0.0001) on the transcript abundance of DLK1, PEG11, and MEG8 in the muscles of lambs with the callipyge allele. DLK1 and PEG11 transcript levels were elevated in the hypertrophied muscles of paternal heterozygous animals relative to animals of the other three genotypes. The PEG11 locus produces a single 6.5 kb transcript and two smaller antisense strand transcripts, referred to as PEG11AS, in skeletal muscle. PEG11AS transcripts were detectable over a 5.5 kb region beginning 1.2 kb upstream of the PEG11 start codon and spanning the entire open reading frame. Analysis of PEG11 expression by quantitative PCR shows a 200-fold induction in the hypertrophied muscles of paternal heterozygous animals and a 13-fold induction in homozygous callipyge animals. PEG11 transcripts were 14-fold more abundant than PEG11AS transcripts in the gluteus medius of paternal heterozygous animals. PEG11AS transcripts were expressed at higher levels than PEG11 transcripts in the gluteus medius of animals of the other three genotypes.ConclusionsThe effect of the callipyge mutation has been to alter the expression of DLK1, GTL2, PEG11 and MEG8 in the hypertrophied skeletal muscles. Transcript abundance of DLK1 and PEG11 was highest in paternal heterozygous animals and exhibited polar overdominant gene expression patterns; therefore, both genes are candidates for causing skeletal muscle hypertrophy. There was unique relationship of PEG11 and PEG11AS transcript abundance in the paternal heterozygous animals that suggests a RNA interference mechanism may have a role in PEG11 gene regulation and polar overdominance in callipyge sheep.
Domestic Animal Endocrinology | 2000
Michael T. Leininger; Carla P. Portocarrero; A. P. Schinckel; M.E. Spurlock; Christopher A. Bidwell; J.N. Nielsen; K.L. Houseknechta
Certain high lean gain swine genotypes have greater sensitivity to pathogen and nonpathogen stressors evident by reduced productivity and increased mortality during disease stress or in suboptimal production environments. Saline (control) and an immunologic challenge (LPS; 25 microg lipopolysaccharide/kg BW) were administered to three genetic populations (each pig used as its own control): high lean (H), moderate lean terminal cross (MT), and moderate lean maternal cross (MM). LPS induced anorexia, and significantly increased body temperature and circulating TNF-alpha, cortisol, and NEFA in all genotypes (P < 0.0004). LPS reduced circulating glucose, insulin, and IGF-1 in all genotypes (P < 0.05). The LPS-induced hypoglycemia was significantly greater in MM versus MT and H pigs (P < 0.03). The hypoinsulinemia was significantly greater in MM versus H pigs (P < 0.02). MM pigs recovered from hypoinsulinemia slower than MT pigs (P < 0.03). Control insulin was higher in H versus MT pigs (P < 0.08), but relative to basal, the insulin response to LPS was similar. Plasma haptoglobin response to LPS was lower for MM versus MT and H pigs (P < 0.02), and tended to be lower in MT versus H pigs (P < 0.09). LPS treatment caused similar decreases in plasma IGF-1 concentrations among genotypes. Ten hours after LPS treatment, leptin mRNA abundance in adipose tissue was significantly reduced (relative to control) in MM and H pigs (P < 0.02) but not in MT pigs (P > 0.05). Physiological differences in leptin, a potent regulator of food intake and energy metabolism, may be important factors in the genetic variation in sensitivity to environmental stress.
PLOS ONE | 2010
Keren Byrne; Michelle L. Colgrave; Tony Vuocolo; Roger D. Pearson; Christopher A. Bidwell; Noelle E. Cockett; David J. Lynn; Jolena N. Fleming-Waddell; Ross L. Tellam
Members of the Ty3-Gypsy retrotransposon family are rare in mammalian genomes despite their abundance in invertebrates and some vertebrates. These elements contain a gag-pol-like structure characteristic of retroviruses but have lost their ability to retrotranspose into the mammalian genome and are thought to be inactive relics of ancient retrotransposition events. One of these retrotransposon-like elements, PEG11 (also called RTL1) is located at the distal end of ovine chromosome 18 within an imprinted gene cluster that is highly conserved in placental mammals. The region contains several conserved imprinted genes including BEGAIN, DLK1, DAT, GTL2 (MEG3), PEG11 (RTL1), PEG11as, MEG8, MIRG and DIO3. An intergenic point mutation between DLK1 and GTL2 causes muscle hypertrophy in callipyge sheep and is associated with large changes in expression of the genes linked in cis between DLK1 and MEG8. It has been suggested that over-expression of DLK1 is the effector of the callipyge phenotype; however, PEG11 gene expression is also strongly correlated with the emergence of the muscling phenotype as a function of genotype, muscle type and developmental stage. To date, there has been no direct evidence that PEG11 encodes a protein, especially as its anti-sense transcript (PEG11as) contains six miRNA that cause cleavage of the PEG11 transcript. Using immunological and mass spectrometry approaches we have directly identified the full-length PEG11 protein from postnatal nuclear preparations of callipyge skeletal muscle and conclude that its over-expression may be involved in inducing muscle hypertrophy. The developmental expression pattern of the PEG11 gene is consistent with the callipyge mutation causing recapitulation of the normal fetal-like gene expression program during postnatal development. Analysis of the PEG11 sequence indicates strong conservation of the regions encoding the antisense microRNA and in at least two cases these correspond with structural or functional domains of the protein suggesting co-evolution of the sense and antisense genes.
PLOS ONE | 2009
Jolena N. Fleming-Waddell; Gayla R. Olbricht; Tasia M. Taxis; Jason D. White; Tony Vuocolo; Bruce A. Craig; Ross L. Tellam; Mike K. Neary; Noelle E. Cockett; Christopher A. Bidwell
Callipyge sheep exhibit extreme postnatal muscle hypertrophy in the loin and hindquarters as a result of a single nucleotide polymorphism (SNP) in the imprinted DLK1-DIO3 domain on ovine chromosome 18. The callipyge SNP up-regulates the expression of surrounding transcripts when inherited in cis without altering their allele-specific imprinting status. The callipyge phenotype exhibits polar overdominant inheritance since only paternal heterozygous animals have muscle hypertrophy. Two studies were conducted profiling gene expression in lamb muscles to determine the down-stream effects of over-expression of paternal allele-specific DLK1 and RTL1 as well as maternal allele-specific MEG3, RTL1AS and MEG8, using Affymetrix bovine expression arrays. A total of 375 transcripts were differentially expressed in callipyge muscle and 25 transcripts were subsequently validated by quantitative PCR. The muscle-specific expression patterns of most genes were similar to DLK1 and included genes that are transcriptional repressors or affect feedback mechanisms in beta-adrenergic and growth factor signaling pathways. One gene, phosphodiesterase 7A had an expression pattern similar to RTL1 expression indicating a biological activity for RTL1 in muscle. Only transcripts that localize to the DLK1-DIO3 domain were affected by inheritance of a maternal callipyge allele. Callipyge sheep are a unique model to study over expression of both paternal allele-specific genes and maternal allele-specific non-coding RNA with an accessible and nonlethal phenotype. This study has identified a number of genes that are regulated by DLK1 and RTL1 expression and exert control on postnatal skeletal muscle growth. The genes identified in this model are primary candidates for naturally regulating postnatal muscle growth in all meat animal species, and may serve as targets to ameliorate muscle atrophy conditions including myopathic diseases and age-related sarcopenia.
Journal of Animal Science | 2011
M. Paczkowski; Y. Yuan; J. Fleming-Waddell; Christopher A. Bidwell; D. Spurlock; R. L. Krisher
The developmental competence of oocytes is progressively attained as females approach puberty. The poor quality of prepubertally derived oocytes suggests that essential processes during cytoplasmic maturation have not been completed. The objective of this experiment was to identify genes in oocytes that are associated with good (cyclic females) and poor (prepubertal females) developmental competence. Development to the blastocyst stage in vitro was significantly decreased in oocytes derived from prepubertal females compared with cyclic females (5.26 and 12.86%, respectively). Approximately 10% of the oocyte transcriptome was differentially expressed between in vitro-matured oocytes derived from cyclic and prepubertal females (P < 0.05); 58% of differentially expressed genes had increased transcript abundance in oocytes derived from cyclic females. Genes involved in the metabolism and regulation of biological processes had increased transcript abundance in oocytes derived from cyclic females, whereas genes involved in translation were increased in prepubertally derived oocytes. Quantitative PCR confirmed differential expression (P < 0.05) for 6 out of 11 selected genes [DPYD (dihydropyrimidine dehydrogenase), RDH11 (retinol dehydrogenase 11), SFRS4 (serine/arginine-rich splicing factor 4), SFRS7 (serine/arginine-rich splicing factor 7), TL4 (transcribed loci 4), and TOP2B (topoisomerase II β)] that were differentially expressed with greater than a 2-fold change by microarray, although 3 of these genes, DPYD, TL4, and TOP2B, were in opposing directions by the 2 methods. In conclusion, expression of multiple genes involved in metabolism and translation was significantly altered in oocytes from prepubertal females compared with cyclic females, which was associated with reduced in vitro development to the blastocyst stage. These genes may represent important cellular mechanisms that regulate oocyte quality.
Biochemical and Biophysical Research Communications | 2012
Min Wang; Hui Yu; Yong Soo Kim; Christopher A. Bidwell; Shihuan Kuang
Skeletal muscles in the limb and body trunk are composed of heterogeneous myofibers expressing different isoforms of myosin heavy chain (Myh), including type I (slow, Myh7), IIA (intermediate, Myh2), IIX (fast, Myh1), and IIB (very fast, Myh4). While the contraction force and speed of a muscle are known to be determined by the relative abundance of myofibers expressing each Myh isoform, it is unclear how specific combinations of myofiber types are formed and regulated at the cellular and molecular level. We report here that myostatin (Mstn) positively regulates slow but negatively regulates fast Myh isoforms. Mstn was expressed at higher levels in the fast muscle myoblasts and myofibers than in the slow muscle counterparts. Interestingly, Mstn knockout led to a shift of Myh towards faster isoforms, suggesting an inhibitory role of Mstn in fast Myh expression. Consistently, when induced to differentiate, Mstn null myoblasts formed myotubes preferentially expressing fast Myh. Conversely, treatment of myoblasts with a recombinant Mstn protein upregulated Myh7 but downregulated Myh4 gene expression in newly formed myotubes. Importantly, both Mstn antibody and soluble activin type 2B receptor inhibited slow Myh7 and promoted fast Myh4 expression, indicating that myostatin acts through canonical activin receptor to regulate the expression of Myh genes. These results demonstrate a role of myostatin in the specification of myofiber types during myogenic differentiation.
Journal of Interferon and Cytokine Research | 2000
Michael T. Leininger; Carla P. Portocarrero; Christopher A. Bidwell; Michael E. Spurlock; Karen L. Houseknecht
Leptin has been implicated in the regulation of anorexia associated with cachexia in rodents and humans. Regulation of leptin expression is under complex endocrine and metabolic control. To determine if leptin expression is regulated by acute inflammation and to define the endocrine and metabolic factor(s) that regulates leptin expression during acute inflammation, castrate male pigs (ad libitum fed, used as their own controls) were treated with saline (control period) and endotoxin (lipopolysaccharide [LPS] period). Frequent blood samples were collected to identify dynamic changes in hormones and metabolites that are known to regulate leptin expression. LPS caused fever and elevated plasma cortisol (p < 0.0004), tumor necrosis factor-alpha (TNF-alpha) (p < 0.0001), and plasma nonesterified fatty acids (NEFA) (p < 0.001) compared with control. Circulating insulin (p < 0.01), glucose (p < 0.003), and insulin-like growth factor-1 (IGF-1) (p < 0.0001), as well as adipose leptin mRNA abundance (p < 0.01), were profoundly reduced following LPS treatment compared with control. Our data indicate that during acute endotoxemia (1-10 h after injection), leptin gene expression is decreased compared with ad libitum fed animals and is more closely related to energy homeostasis than cytokine profiles in plasma.
Collaboration
Dive into the Christopher A. Bidwell's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputs