Joma Joy
Agency for Science, Technology and Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joma Joy.
Journal of Biological Chemistry | 2013
Young Mee Kim; Shovanlal Gayen; CongBao Kang; Joma Joy; Qiwei Huang; Angela Shuyi Chen; John Liang Kuan Wee; Melgious Jin Yan Ang; Huichang Annie Lim; Alvin W. Hung; Rong Li; Christian G. Noble; Le Tian Lee; Andy Yip; Qing Yin Wang; Cheng San Brian Chia; Jeffrey Hill; Pei Yong Shi; Thomas H. Keller
Background: Dengue protease is a two-component protease that is important for viral replication. Results: An unlinked protease complex containing the NS2B regulatory region and the NS3 protease domain was obtained. Conclusion: The unlinked protease complex produces dispersed cross-peaks in NMR spectra and exists predominantly in a closed conformation in solution. Significance: This new construct will be a useful tool for drug discovery against the dengue virus. The dengue virus (DENV) is a mosquito-borne pathogen responsible for an estimated 100 million human infections annually. The viral genome encodes a two-component trypsin-like protease that contains the cofactor region from the nonstructural protein NS2B and the protease domain from NS3 (NS3pro). The NS2B-NS3pro complex plays a crucial role in viral maturation and has been identified as a potential drug target. Using a DENV protease construct containing NS2B covalently linked to NS3pro via a Gly4-Ser-Gly4 linker (“linked protease”), previous x-ray crystal structures show that the C-terminal fragment of NS2B is remote from NS3pro and exists in an open state in the absence of an inhibitor; however, in the presence of an inhibitor, NS2B complexes with NS3pro to form a closed state. This linked enzyme produced NMR spectra with severe signal overlap and line broadening. To obtain a protease construct with a resolved NMR spectrum, we expressed and purified an unlinked protease complex containing a 50-residue segment of the NS2B cofactor region and NS3pro without the glycine linker using a coexpression system. This unlinked protease complex was catalytically active at neutral pH in the absence of glycerol and produced dispersed cross-peaks in a 1H-15N heteronuclear single quantum correlation spectrum that enabled us to conduct backbone assignments using conventional techniques. In addition, titration with an active-site peptide aldehyde inhibitor and paramagnetic relaxation enhancement studies demonstrated that the unlinked DENV protease exists predominantly in a closed conformation in solution. This protease complex can serve as a useful tool for drug discovery against DENV.
European Journal of Medicinal Chemistry | 2011
Huichang Annie Lim; Joma Joy; Jeffrey Hill; Cheng San Brian Chia
This communication reports the synthesis and inhibitory activities of novel non-covalent peptidomimetic inhibitors of the West Nile virus NS2B/NS3 protease containing a decarboxylated P1 arginine (agmatine; 4-aminobutylguanidine) and related analogues. One agmatine peptidomimetic (4-phenyl-phenacetyl-Lys-Lys-agmatine; compound 2) was shown to be a competitive inhibitor with a binding affinity of K(i) 2.05 ± 0.13 μM and was inactive against thrombin (IC(50) > 100 μM). Our results suggest that peptidomimetics with agmatine at the P1 position could potentially be employed as starting tools in the design of non-covalent competitive protease inhibitors due to their relative stability and ease of chemical synthesis compared to inhibitors containing reactive electrophilic warheads.
ChemMedChem | 2013
Jin Xu; Anqi Chen; Joma Joy; Vanessa Joanne Xavier; Esther H. Q. Ong; Jeffrey Hill; Christina L. L. Chai
Recent biological and computational advances in drug design have led to renewed interest in targeted covalent inhibition as an efficient and practical approach for the development of new drugs. As part of our continuing efforts in the exploration of the therapeutic potential of resorcylic acid lactones (RALs), we report herein the design, synthesis, and biological evaluation of conveniently accessible RAL enamide analogues as novel covalent inhibitors of MAP kinase interacting kinases (MNKs). In this study, we have successfully demonstrated that the covalent binding ability of RAL enamides can be tuned by attaching an electron‐withdrawing motif, such as an acyl group, to enhance its reactivity toward the cysteine residues at the MNK1/2 binding sites. We have also shown that 1H NMR spectroscopy is a convenient and effective tool for screening the covalent binding activities of enamides using cysteamine as a mimic of the key cysteine residue in the enzyme, whereas mass spectrometric analysis confirms covalent modification of the kinases. Preliminary optimization of the initial hit led to the discovery of enamides with low micromolar activity in MNK assays. Cancer cell line assays have identified RAL enamides that inhibit the growth of cancer cells with similar potency to the natural product L‐783,277.
Antiviral Research | 2015
Justin Jang Hann Chu; Regina Ching Hua Lee; Melgious Jin Yan Ang; Wei-Ling Wang; Huichang Annie Lim; John Liang Kuan Wee; Joma Joy; Jeffrey Hill; C. S. Brian Chia
The dengue virus is a mosquito-borne pathogen responsible for an estimated 50-100 million human dengue infections annually. There are currently no approved drugs against this disease, resulting in a major unmet clinical need. The dengue viral NS2B-NS3 protease has been identified as a plausible drug target due to its involvement in viral replication in mammalian host cells. In the past decade, at least 20 dengue NS2B-NS3 protease inhibitors have been reported in the literature with a range of inhibitory activities in protease assays. However, such assays do not shed light on an inhibitors ability to penetrate human cell membranes where the viral protease resides. In this study, we investigated the antiviral activities of 15 small-molecule and peptide-based NS2B-NS3 inhibitors on dengue serotype 2-infected HuH-7 human hepatocarcinoma cells. Experimental results revealed anthraquinone ARDP0006 (compound 5) to be the most potent inhibitor which reduced dengue viral titer by more than 1 log PFU/mL at 1 μM in our cell-based assays involving HuH-7 and K562 cell lines, suggesting that its scaffold could serve as a lead for further medicinal chemistry studies. Compound 5 was also found to be non-cytotoxic at 1 μM over 3 days incubation on HuH-7 cells using the Alamar Blue cellular toxicity assay.
Biochemical Journal | 2014
Xiaoying Koh-Stenta; Joma Joy; Anders Poulsen; Rong Li; Yvonne Tan; Yoonjung Shim; Jung Hyun Min; Liling Wu; Anna Ngo; Jianhe Peng; Wei Guang Seetoh; Jing Cao; John Liang Kuan Wee; Perlyn Zekui Kwek; Alvin W. Hung; Umayal Lakshmanan; Horst Flotow; Ernesto Guccione; Jeffrey Hill
PRDM proteins have emerged as important regulators of disease and developmental processes. To gain insight into the mechanistic actions of the PRDM family, we have performed comprehensive characterization of a prototype member protein, the histone methyltransferase PRDM9, using biochemical, biophysical and chemical biology techniques. In the present paper we report the first known molecular characterization of a PRDM9-methylated recombinant histone octamer and the identification of new histone substrates for the enzyme. A single C321P mutant of the PR/SET domain was demonstrated to significantly weaken PRDM9 activity. Additionally, we have optimized a robust biochemical assay amenable to high-throughput screening to facilitate the generation of small-molecule chemical probes for this protein family. The present study has provided valuable insight into the enzymology of an intrinsically active PRDM protein.
European Journal of Medicinal Chemistry | 2013
Huichang Annie Lim; Melgious Jin Yan Ang; Joma Joy; Anders Poulsen; Wenshi Wu; Shi Chie Ching; Jeffrey Hill; Cheng San Brian Chia
This communication describes the synthesis and inhibitory activities of thirty-seven novel C-terminal agmatine dipeptides used as screening compounds to study the structure-activity relationship between active-site peptidomimetics and the West Nile virus (WNV) NS2B/NS3 serine protease. Our efforts lead to the discovery of a novel agmatine dipeptide inhibitor (compound 33, IC50 2.6 ± 0.3 μM) with improved inhibitory activity in comparison to the most potent inhibitor described in our recent report [IC50 4.7 ± 1.2 μM; Lim et al., Eur. J. Med. Chem. 46 (2011) 3130-3134]. In addition, our study cleared the contention surrounding the previous X-ray co-crystallization study and an enzyme inhibition report on the binding conformation adopted by active-site peptide aldehydes. Our data should provide valuable insights into the design of future peptidomimetic antivirals against WNV infections.
Protein Expression and Purification | 2013
Qiwei Huang; Qingxin Li; Joma Joy; Angela Shuyi Chen; David Ruiz-Carrillo; Jeffrey Hill; Julien Lescar; CongBao Kang
Dengue virus (DENV), a member of the flavivirus genus, affects 50-100 million people in tropical and sub-tropical regions. The DENV protease domain is located at the N-terminus of the NS3 protease and requires for its enzymatic activity a hydrophilic segment of the NS2B that acts as a cofactor. The protease is an important antiviral drug target because it plays a crucial role in virus replication by cleaving the genome-coded polypeptide into mature functional proteins. Currently, there are no drugs to inhibit DENV protease activity. Most structural and functional studies have been conducted using protein constructs containing the NS3 protease domain connected to a soluble segment of the NS2B membrane protein via a nine-residue linker. For in vitro structural and functional studies, it would be useful to produce a natural form of the DENV protease containing the NS3 protease domain and the full-length NS2B protein. Herein, we describe the expression and purification of a natural form of DENV protease (NS2BFL-NS3pro) containing the full-length NS2B protein and the protease domain of NS3 (NS3pro). The protease was expressed and purified in detergent micelles necessary for its folding. Our results show that this purified protein was active in detergent micelles such as lyso-myristoyl phosphatidylcholine (LMPC). These findings should facilitate further structural and functional studies of the protease and will facilitate drug discovery targeting DENV.
Drug Design Development and Therapy | 2015
Xiaoying Koh-Stenta; Joma Joy; Si Fang Wang; Perlyn Zekui Kwek; John Liang Kuan Wee; Kah Fei Wan; Shovanlal Gayen; Angela Shuyi Chen; CongBao Kang; May Ann Lee; Anders Poulsen; Subhash G. Vasudevan; Jeffrey P Hill; Kassoum Nacro
Dengue virus (DENV) protease is an attractive target for drug development; however, no compounds have reached clinical development to date. In this study, we utilized a potent West Nile virus protease inhibitor of the pyrazole ester derivative class as a chemical starting point for DENV protease drug development. Compound potency and selectivity for DENV protease were improved through structure-guided small molecule optimization, and protease-inhibitor binding interactions were validated biophysically using nuclear magnetic resonance. Our work strongly suggests that this class of compounds inhibits flavivirus protease through targeted covalent modification of active site serine, contrary to an allosteric binding mechanism as previously described.
FEBS Letters | 2010
Joma Joy; Ng Fui Mee; Wee Liang Kuan; Kwek Zekui Perlyn; Then Siew Wen; Jeffrey Hill
Murray Valley encephalitis virus (MVEV) is a member of the flavivirus group, a large family of single stranded RNA viruses, which cause serious disease in all regions of the world. Its genome encodes a large polyprotein which is processed by both host proteinases and a virally encoded serine proteinase, non‐structural protein 3 (NS3). NS3, an essential viral enzyme, requires another virally encoded protein cofactor, NS2B, for proteolytic activity. The cloning, expression and biochemical characterisation of a stable MVEV NS2B–NS3 fusion protein is described.
Biochemical Journal | 2017
Xiaoying Koh-Stenta; Anders Poulsen; Rong Li; John Liang Kuan Wee; Perlyn Zekui Kwek; Sin Yin Chew; Jianhe Peng; Liling Wu; Ernesto Guccione; Joma Joy; Jeffrey Hill
We have previously characterised the histone lysine methyltransferase properties of PRDM9, a member of the PRDM family of putative transcriptional regulators. PRDM9 displays broad substrate recognition and methylates a range of histone substrates, including octamers, core histone proteins, and peptides. In the present study, we show that PRDM9 performs intramolecular automethylation on multiple lysine residues localised to a lysine-rich region on the post-SET (suppressor of variegation 3-9, enhancer of zeste and trithorax) domain. PRDM9 automethylation is abolished by a single active-site mutation, C321P, also known to disrupt interactions with S-adenosylmethionine. We have taken an initial step towards tool compound generation through rational design of a substrate-mimic, peptidic inhibitor of PRDM9 automethylation. The discovery of automethylation in PRDM9 adds a new dimension to our understanding of PRDM9 enzymology.