Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jon A. Dieringer is active.

Publication


Featured researches published by Jon A. Dieringer.


Reviews in Analytical Chemistry | 2008

Surface-Enhanced Raman Spectroscopy

Paul L. Stiles; Jon A. Dieringer; Nilam C. Shah; Richard P. Van Duyne

The ability to control the size, shape, and material of a surface has reinvigorated the field of surface-enhanced Raman spectroscopy (SERS). Because excitation of the localized surface plasmon resonance of a nanostructured surface or nanoparticle lies at the heart of SERS, the ability to reliably control the surface characteristics has taken SERS from an interesting surface phenomenon to a rapidly developing analytical tool. This article first explains many fundamental features of SERS and then describes the use of nanosphere lithography for the fabrication of highly reproducible and robust SERS substrates. In particular, we review metal film over nanosphere surfaces as excellent candidates for several experiments that were once impossible with more primitive SERS substrates (e.g., metal island films). The article also describes progress in applying SERS to the detection of chemical warfare agents and several biological molecules.


Journal of the American Chemical Society | 2008

Probing the structure of single-molecule surface-enhanced Raman scattering hot spots.

Jon P. Camden; Jon A. Dieringer; Yingmin Wang; David J. Masiello; Lawrence D. Marks; George C. Schatz; Richard P. Van Duyne

We present here a detailed study of the specific nanoparticle structures that give rise to single-molecule surface-enhanced Raman scattering (SMSERS). A variety of structures are observed, but the simplest are dimers of Ag nanocrystals. We chose one of these structures for detailed study using electrodynamics calculations and found that the electromagnetic SERS enhancement factors of 10(9) are easily obtained and are consistent with single-molecule SERS activity.


Accounts of Chemical Research | 2008

Controlled Plasmonic Nanostructures for Surface-Enhanced Spectroscopy and Sensing

Jon P. Camden; Jon A. Dieringer; Jing Zhao; Richard P. Van Duyne

After its discovery more than 30 years ago, surface-enhanced Raman spectroscopy (SERS) was expected to have major impact as a sensitive analytical technique and tool for fundamental studies of surface species. Unfortunately, the lack of reliable and reproducible fabrication methods limited its applicability. In recent years, SERS has enjoyed a renaissance, and there is renewed interest in both the fundamentals and applications of SERS. New techniques for nanofabrication, the design of substrates that maximize the electromagnetic enhancement, and the discovery of single-molecule SERS are driving the resurgence of this field. This Account highlights our groups recent work on SERS. Initially, we discuss SERS substrates that have shown proven reproducibility, stability, and large field enhancement. These substrates enable many analytical applications, such as anthrax detection, chemical warfare agent stimulant detection, and in vitro and in vivo glucose sensing. We then turn to a detailed study of the wavelength and distance dependence of SERS, which further illustrate predictions obtained from the electromagnetic enhancement mechanism. Last, an isotopic labeling technique applied to the rhodamine 6G (R6G)/silver system serves as an additional proof of the existence of single-molecule SERS and explores the dynamical features of this process. This work, in conjunction with theoretical calculations, allows us to comment on the possible role of charge transfer in the R6G/silver system.


Faraday Discussions | 2006

Introductory Lecture : Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications

Jon A. Dieringer; Adam D. McFarland; Nilam C. Shah; Douglas A. Stuart; Alyson V. Whitney; Chanda Ranjit Yonzon; Matthew A. Young; Xiaoyu Zhang; Richard P. Van Duyne

Surface-enhanced Raman spectroscopy (SERS) is currently experiencing a renaissance in its development driven by the remarkable discovery of single molecule SERS (SMSERS) and the explosion of interest in nanophotonics and plasmonics. Because excitation of the localized surface plasmon resonance (LSPR) of a nanostructured surface or nanoparticle lies at the heart of SERS, it is important to control all of the factors influencing the LSPR in order to maximize signal strength and ensure reproducibility. These factors include material, size, shape, interparticle spacing, and dielectric environment. All of these factors must be carefully controlled to ensure that the incident laser light maximally excites the LSPR in a reproducible manner. This article describes the use of nanosphere lithography for the fabrication of highly reproducible and robust SERS substrates for both fundamental studies and applications. Atomic layer deposition (ALD) is introduced as a novel fabrication method for dielectric spacers to study the SERS distance dependence and control the nanoscale dielectric environment. Wavelength scanned SER excitation spectroscopy (WS SERES) measurements show that enhancement factors approximately 10(8) are obtainable from NSL-fabricated surfaces and provide new insight into the electromagneticfield enhancement mechanism. Tip-enhanced Raman spectroscopy (TERS) is an extremely promising new development to improve the generality and information content of SERS. A 2D correlation analysis is applied to SMSERS data. Finally, the first in vivo SERS glucose sensing study is presented.


Physical Chemistry Chemical Physics | 2013

Creating, characterizing, and controlling chemistry with SERS hot spots

Samuel L. Kleinman; Renee R. Frontiera; Anne Isabelle Henry; Jon A. Dieringer; Richard P. Van Duyne

In this perspective we discuss the roles of hot spots in surface-enhanced Raman spectroscopy (SERS). After giving background and defining the hot spot, we evaluate a variety of SERS substrates which often contain hot spots. We compare and discuss the differentiating properties of each substrate. We then provide a thorough analysis of the hot spot contribution to the observed SERS signal both in ensemble-averaged and single-molecule conditions. We also enumerate rules for determining the SERS enhancement factor (EF) to clarify the use of this common metric. Finally, we present a forward-looking overview of applications and uses of hot spots for controlling chemistry on the nanoscale. Although not exhaustive, this perspective is a review of some of the most interesting and promising methodologies for creating, controlling, and using hot spots for electromagnetic amplification.


Journal of the American Chemical Society | 2009

Surface-Enhanced Raman Excitation Spectroscopy of a Single Rhodamine 6G Molecule

Jon A. Dieringer; Kristin L. Wustholz; David J. Masiello; Jon P. Camden; Samuel L. Kleinman; George C. Schatz; Richard P. Van Duyne

The surface-enhanced Raman excitation profiles (REPs) of rhodamine 6G (R6G) on Ag surfaces are studied using a tunable optical parametric oscillator excitation source and versatile detection scheme. These experiments afford the ability to finely tune the excitation wavelength near the molecular resonance of R6G (i.e., approximately 500-575 nm) and perform wavelength-scanned surface-enhanced Raman excitation measurements of a single molecule. The ensemble-averaged surface-enhanced REPs are measured for collections of molecules on Ag island films. The relative contributions of the 0-0 and 0-1 vibronic transitions to the surface-enhanced REPs vary with vibrational frequency. These results highlight the role of excitation energy in determining the resonance Raman intensities for R6G on surface-enhancing nanostructures. Single-molecule measurements are obtained from individual molecules of R6G on Ag colloidal aggregates, where single-molecule junctions are located using the isotope-edited approach. Overall, single-molecule surface-enhanced REPs are narrow in comparison to the ensemble-averaged excitation profiles due to a reduction in inhomogeneous broadening. This work describes the first Raman excitation spectroscopy studies of a single molecule, revealing new information previously obscured by the ensemble.


Nano Letters | 2012

Observation of multiple vibrational modes in ultrahigh vacuum tip-enhanced Raman spectroscopy combined with molecular-resolution scanning tunneling microscopy

Nan Jiang; Edward T. Foley; Jordan M. Klingsporn; Matthew D. Sonntag; Nicholas Valley; Jon A. Dieringer; Tamar Seideman; George C. Schatz; Mark C. Hersam; R. P. Van Duyne

Multiple vibrational modes have been observed for copper phthalocyanine (CuPc) adlayers on Ag(111) using ultrahigh vacuum (UHV) tip-enhanced Raman spectroscopy (TERS). Several important new experimental features are introduced in this work that significantly advance the state-of-the-art in UHV-TERS. These include (1) concurrent sub-nm molecular resolution STM imaging using Ag tips with laser illumination of the tip-sample junction, (2) laser focusing and Raman collection optics that are external to the UHV-STM that has two cryoshrouds for future low temperature experiments, and (3) all sample preparation steps are carried out in UHV to minimize contamination and maximize spatial resolution. Using this apparatus we have been able to demonstrate a TERS enhancement factor of 7.1 × 10(5). Further, density-functional theory calculations have been carried out that allow quantitative identification of eight different vibrational modes in the TER spectra. The combination of molecular-resolution UHV-STM imaging with the detailed chemical information content of UHV-TERS allows the interactions between large polyatomic molecular adsorbates and specific binding sites on solid surfaces to be probed with unprecedented spatial and spectroscopic resolution.


Ultramicroscopy | 2009

A method to correlate optical properties and structures of metallic nanoparticles

Y. Y. Wang; S.K. Eswaramoorthy; Leif J. Sherry; Jon A. Dieringer; Jon P. Camden; George C. Schatz; R. P. Van Duyne; Laurence D. Marks

The optical response of individual nanoparticles is strongly influenced by their structures. In this report, we present a quick and simple pattern-matching based approach in which optical images of nanoparticles from localized surface plasmon resonance and single-molecule surface-enhanced Raman spectroscopy were used in conjunction with transmission electron microscopy for correlation of optical responses and the nanostructures of exactly the same nanoparticles or clusters of nanoparticles.


Archive | 2006

Glucose Sensing with Surface-Enhanced Raman Spectroscopy

Chanda Ranjit Yonzon; Olga Lyandres; Nilam C. Shah; Jon A. Dieringer; Richard P. Van Duyne

Since the discovery of SERS nearly thirty years ago, it has progressed from model-system studies of pyridine to state-of-the-art surface-science studies coupled with real-world applications. We have demonstrated a SERS-based glucose sensor as an example of the latter. A SERS-active surface functionalized with a mixed SAM was shown to partition and departition glucose efficiently. The two components of the SAM, DT and MH, provide the appropriate balance of hydrophobic and hydrophilic groups. The DT/MH-functionalized SERS surface partitioned and departitioned glucose in less than 1 min, which indicates that the sensor can be used in real-time, continuous sensing. Furthermore, quantitative glucose measurements, in the physiological concentration range, in a mixture of interfering analytes and in bovine plasma were also demonstrated. Finally, the DT/MH-functionalized SERS surface showed temporal stability for at least 10 days in bovine plasma, making it a potential candidate for implantable sensing.


Tip Enhancement | 2007

Plasmonic Materials for Surface-Enhanced and Tip-Enhanced Raman Spectroscopy

Matthew A. Young; Jon A. Dieringer; R. P. Van Duyne

Publisher Summary The chapter focuses on the fabrication and characterization of plasmonic materials that show promise in chemical/biological sensing and surface-enhanced spectroscopy applications. Plasmonics is an emerging branch of nano-optics and nano-photonics that examines the properties of collective electronic excitations in noble metal films or nanoparticles known colloquially as surface plasmons. The chapter briefly reviews the simple, massively parallel method of nanosphere lithography and its use in the fabrication of size- and shape-controlled nanostructures. The essential physics of the localized surface plasmon resonance (LSPR) and the theoretical methods used to understand it are described, and key results concerning the short- and long-range distance dependencies of the electromagnetic fields surrounding the nanoparticles are summarized in the chapter. The relationship between LSPR spectroscopy and surface-enhanced Raman spectroscopy (SERS) is analyzed in the chapter. SERS provides a systematic reproducible way to optimize the signal intensity in SERS experiments. These experiments are directly relevant to optimization of tip-enhanced Raman spectroscopy (TERS) experiments, where the electromagnetic enhancement mechanism is expected to play a crucial role. The chapter also presents some initial works on force dependence in TERS.

Collaboration


Dive into the Jon A. Dieringer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge