Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jon A. Linker is active.

Publication


Featured researches published by Jon A. Linker.


The Astrophysical Journal | 1994

Disruption of coronal magnetic field arcades

Zoran Mikic; Jon A. Linker

The ideal and resistive properties of isolated large-scale coronal magnetic arcades are studied using axisymmetric solutions of the time-dependent magnetohydrodynamic (MHD) equations in spherical geometry. We examine how flares and coronal mass ejections may be initiated by sudden disruptions of the magnetic field. The evolution of coronal arcades in response to applied shearing photospheric flows indicates that disruptive behavior can occur beyond a critical shear. The disruption can be traced to ideal MHD magnetic nonequilibrium. The magnetic field expands outward in a process that opens the field lines and produces a tangential discontinuity in the magnetic field. In the presence of plasma resistivity, the resulting current sheet is the site of rapid reconnection, leading to an impulsive release of magnetic energy, fast flows, and the ejection of a plasmoid. We relate these results to previous studies of force-free fields and to the properties of the open-field configuration. We show that the field lines in an arcade are forced open when the magnetic energy approaches (but is still below) the open-field energy, creating a partially open field in which most of the field lines extend away from the solar surface. Preliminary application of this model to helmet streamers indicates that it is relevant to the initiation of coronal mass ejections.


Physics of Plasmas | 1999

Magnetohydrodynamic modeling of the global solar corona

Zoran Mikic; Jon A. Linker; D. D. Schnack; Roberto Lionello; Alfonso G. Tarditi

A three-dimensional magnetohydrodynamic model of the global solar corona is described. The model uses observed photospheric magnetic fields as a boundary condition. A version of the model with a polytropic energy equation is used to interpret solar observations, including eclipse images of the corona, Ulysses spacecraft measurements of the interplanetary magnetic field, and coronal hole boundaries from Kitt Peak He 10 830 A maps and extreme ultraviolet images from the Solar Heliospheric Observatory. Observed magnetic fields are used as a boundary condition to model the evolution of the solar corona during the period February 1997–March 1998. A model with an improved energy equation and Alfven waves that is better able to model the solar wind is also presented.


The Astrophysical Journal | 2003

Coronal Mass Ejection: Initiation, Magnetic Helicity, and Flux Ropes. I. Boundary Motion-driven Evolution

Tahar Amari; J. F. Luciani; J. J. Aly; Zoran Mikic; Jon A. Linker

In this paper we study a class of three-dimensional magnetohydrodynamic model problems that may be useful to understand the role of twisted flux ropes in coronal mass ejections. We construct in a half-space a series of force-free bipolar configurations with different helicity contents and bring them into an evolution by imposing to their footpoints on the boundary slow motions converging toward the inversion line. For all the cases that have been computed, this process leads, after a phase of quasi-static evolution, to the formation of a twisted flux rope by a reconnection process and to the global disruption of the configuration. In contrast with the results of some previous studies, however, the rope is never in equilibrium. It thus appears that the presence of a rope in the preeruptive phase is not a necessary condition for the disruption but may be the product of the disruption itself. Moreover, the helicity keeps an almost constant value during the evolution, and the problem of the origin of the helicity content of an eruptive configuration appears to be that of the initial force-free state. In addition to these numerical simulations, we report some new relations for the time variations of the energy and the magnetic helicity and develop a simple analytical model in which the magnetic field evolution exhibits essential features quite similar to those observed during the quasi-static phase in the numerics.


The Astrophysical Journal | 2006

A Comparison between Global Solar Magnetohydrodynamic and Potential Field Source Surface Model Results

Pete Riley; Jon A. Linker; Zoran Mikic; Roberto Lionello; Stephen A. Ledvina; J. G. Luhmann

The large-scale, steady-state magnetic field configuration of the solar corona is typically computed using boundary conditions derived from photospheric observations. Two approaches are typically used: (1) potential field source surface (PFSS) models, and (2) the magnetohydrodynamic (MHD) models. The former have the advantage that they are simple to develop and implement, require relatively modest computer resources, and can resolve structure on scales beyond those that can be handled by current MHD models. However, they have been criticized because their basic assumptions are seldom met. Moreover, PFSS models cannot directly incorporate time-dependent phenomena, such as magnetic reconnection, and do not include plasma or its effects. In this study, we assess how well PFSS models can reproduce the large-scale magnetic structure of the corona by making detailed comparisons with MHD solutions at different phases in the solar activity cycle. In particular, we (1) compute the shape of the source surface as inferred from the MHD solutions to assess deviations from sphericity, (2) compare the coronal hole boundaries as determined from the two models, and (3) estimate the effects of nonpotentiality. Our results demonstrate that PFSS solutions often closely match MHD results for configurations based on untwisted coronal fields (i.e., when driven by line-of-sight magnetograms). It remains an open question whether MHD solutions will differ more substantially from PFSS solutions when vector magnetograms are used as boundary conditions. This will be addressed in the near future when vector data from SOLIS, the Solar Dynamics Observatory, and Solar-B become incorporated into the MHD models.


Science | 1996

Io's Interaction with the Plasma Torus: Galileo Magnetometer Report

M. G. Kivelson; Krishan K. Khurana; Raymond J. Walker; J. Warnecke; C. T. Russell; Jon A. Linker; D. J. Southwood; C. Polanskey

Galileo magnetometer data at 0.22-second resolution reveal a complex interaction between Io and the flowing plasma of the Io torus. The highly structured magnetic field depression across the downstream wake, although consistent with a magnetized Io, is modified by sources of currents within the plasma that introduce ambiguity into the interpretation of the signature. Highly monochromatic ion cyclotron waves appear to be correlated with the local neutral particle density. The power peaks in the range of molecular ion gyrofrequencies, suggesting that molecules from Io can remain undissociated over a region of more than 15 Io radii around Io.


The Astrophysical Journal | 2009

Multispectral Emission of the Sun during the First Whole Sun Month: Magnetohydrodynamic Simulations

Roberto Lionello; Jon A. Linker; Zoran Mikic

We demonstrate that a three-dimensional magnetohydrodynamic (MHD) simulation of the corona can model its global plasma density and temperature structure with sufficient accuracy to reproduce many of the multispectral properties of the corona observed in extreme ultraviolet (EUV) and X-ray emission. The key ingredient to this new type of global MHD model is the inclusion of energy transport processes (coronal heating, anisotropic thermal conduction, and radiative losses) in the energy equation. The calculation of these processes has previously been confined to one-dimensional loop models, idealized two-dimensional computations, and three-dimensional active region models. We refer to this as the thermodynamic MHD model, and we apply it to the time period of Carrington rotation 1913 (1996 August 22 to September 18). The form of the coronal heating term strongly affects the plasma density and temperature of the solutions. We perform our calculation for three different empirical heating models: (1) a heating function exponentially decreasing in radius; (2) the model of Schrijver et al.; and (3) a model reproducing the heating properties of the quiet Sun and active regions. We produce synthetic emission images from the density and temperature calculated with these three heating functions and quantitatively compare them with observations from EUV Imaging Telescope on the Solar and Heliospheric Observatory and the soft X-ray telescope on Yohkoh. Although none of the heating models provide a perfect match, heating models 2 and 3 provide a reasonable match to the observations.


The Astrophysical Journal | 2003

Coronal Mass Ejection: Initiation, Magnetic Helicity, and Flux Ropes. II. Turbulent Diffusion-driven Evolution

Tahar Amari; J. F. Luciani; J. J. Aly; Zoran Mikic; Jon A. Linker

We consider a three-dimensional bipolar magnetic field B, occupying a half-space, which is driven into evolution by the slow turbulent diffusion of its normal component on the boundary. The latter is imposed by fixing the tangential component of the electric field and leads to flux cancellation. We first present general analytical considerations on this problem and then construct a class of explicit solutions in which B keeps evolving quasi-statically through a sequence of force-free configurations without exhibiting any catastrophic behavior. Thus, we report the results of a series of numerical simulations in which B evolves from different force-free states, the electric field on the boundary being imposed to have a vanishing electrostatic part (the latter condition is not enforced in the analytical model, and thus it is possible a priori for the results of the two types of calculations to be different). In all the cases, we find that the evolution conserves the magnetic helicity and exhibits two qualitatively different phases. The first one, during which a twisted flux rope is created, is slow and almost quasi-static, while the second one is associated with a disruption, which is confined for a small initial helicity and global for a large initial helicity. Our calculations may be relevant for modeling the coronal mass ejections that have been observed to occur in the late dispersion phase of an active region. In particular, they may allow us to understand the role played by a twisted flux rope in these events.


The Astrophysical Journal | 2011

A Model for the Sources of the Slow Solar Wind

Spiro K. Antiochos; Zoran Mikic; Viacheslav Titov; Roberto Lionello; Jon A. Linker

Models for the origin of the slow solar wind must account for two seemingly contradictory observations: the slow wind has the composition of the closed-field corona, implying that it originates from the continuous opening and closing of flux at the boundary between open and closed field. On the other hand, the slow wind also has large angular width, up to ~60?, suggesting that its source extends far from the open-closed boundary. We propose a model that can explain both observations. The key idea is that the source of the slow wind at the Sun is a network of narrow (possibly singular) open-field corridors that map to a web of separatrices and quasi-separatrix layers in the heliosphere. We compute analytically the topology of an open-field corridor and show that it produces a quasi-separatrix layer in the heliosphere that extends to angles far from the heliospheric current sheet. We then use an MHD code and MDI/SOHO observations of the photospheric magnetic field to calculate numerically, with high spatial resolution, the quasi-steady solar wind, and magnetic field for a time period preceding the 2008 August 1 total solar eclipse. Our numerical results imply that, at least for this time period, a web of separatrices (which we term an S-web) forms with sufficient density and extent in the heliosphere to account for the observed properties of the slow wind. We discuss the implications of our S-web model for the structure and dynamics of the corona and heliosphere and propose further tests of the model.


Journal of Geophysical Research | 1998

Ganymede's magnetosphere: Magnetometer overview

M. G. Kivelson; J. Warnecke; L. Bennett; Steven Peter Joy; Krishan K. Khurana; Jon A. Linker; C. T. Russell; R. J. Walker; C. Polanskey

Ganymede presents a unique example of an internally magnetized moon whose intrinsic magnetic field excludes the plasma present at its orbit, thereby forming a magnetospheric cavity. We describe some of the properties of this mini-magnetosphere, embedded in a sub-Alfvenic flow and formed within a planetary magnetosphere. A vacuum superposition model (obtained by adding the internal field of Ganymede to the field imposed by Jupiter) organizes the data acquired by the Galileo magnetometer on four close passes in a useful, intuitive fashion. The last field line that links to Ganymede at both ends extends to ∼2 Ganymede radii, and the transverse scale of the magnetosphere is ∼5.5 Ganymede radii. Departures from this simple model arise from currents flowing in the Alfven wings and elsewhere on the magnetopause. The four passes give different cuts through the magnetosphere from which we develop a geometric model for the magnetopause surface as a function of the System III location of Ganymede. On one of the passes, Ganymede was located near the center of Jupiters plasma disk. For this pass we identify probable Kelvin-Helmholtz surface waves on the magnetopause. After entering the relatively low-latitude upstream magnetosphere, Galileo apparently penetrated the region of closed field lines (ones that link to Ganymede at both ends), where we identify predominantly transverse fluctuations at frequencies reasonable for field line resonances. We argue that magnetic field measurements, when combined with flow measurements, show that reconnection is extremely efficient. Downstream reconnection, consequently, may account for heated plasma observed in a distant crossing of Ganymedes wake. We note some of the ways in which Ganymedes unusual magnetosphere corresponds to familiar planetary magnetospheres (viz., the magnetospheric topology and an electron ring current). We also comment on some of the ways in which it differs from familiar planetary magnetospheres (viz., relative stability and predictability of upstream plasma and field conditions, absence of a magnetotail plasma sheet and of a plasmasphere, and probable instability of the ring current).


The Astrophysical Journal | 1999

Three-dimensional Solutions of Magnetohydrodynamic Equationsfor Prominence Magnetic Support: Twisted Magnetic Flux Rope

Tahar Amari; J. F. Luciani; Zoran Mikic; Jon A. Linker

The search for a background magnetic configuration favorable for prominence support has been given a great deal of attention for several decades. The most recent theoretical studies seem to agree that a promising candidate for the support of the dense and cooler prominence material, which fulfills several of the theoretical and observational requirements such as twist, shear along the neutral line, and dips, is a magnetic flux rope. The most convincing models take an infinitely long periodic configuration that consists of a linear constant-α force-free magnetic field. These models, however, assume values of α that are close to its maximum possible value. In this Letter, we report our recent results, which show that it is indeed possible to produce a configuration that consists of a twisted magnetic flux tube embedded in an overlaying, almost potential, arcade such that high electric currents (and therefore values of α) are confined to the inner twisted magnetic flux rope. We present two MHD processes—corresponding to two different types of boundary conditions—that produce such a configuration. Our results show that the process associated variations of Bz at the photospheric level by applying an electric field involving diffusion is much more efficient for creating a structure with more twist and dips.

Collaboration


Dive into the Jon A. Linker's collaboration.

Top Co-Authors

Avatar

Zoran Mikic

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Roberto Lionello

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Pete Riley

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yung Mok

University of California

View shared research outputs
Top Co-Authors

Avatar

Cooper Downs

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Tibor Török

University College London

View shared research outputs
Top Co-Authors

Avatar

Dusan Odstrcil

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

M. G. Kivelson

University of California

View shared research outputs
Top Co-Authors

Avatar

J. G. Luhmann

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge