Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zoran Mikic is active.

Publication


Featured researches published by Zoran Mikic.


The Astrophysical Journal | 1994

Disruption of coronal magnetic field arcades

Zoran Mikic; Jon A. Linker

The ideal and resistive properties of isolated large-scale coronal magnetic arcades are studied using axisymmetric solutions of the time-dependent magnetohydrodynamic (MHD) equations in spherical geometry. We examine how flares and coronal mass ejections may be initiated by sudden disruptions of the magnetic field. The evolution of coronal arcades in response to applied shearing photospheric flows indicates that disruptive behavior can occur beyond a critical shear. The disruption can be traced to ideal MHD magnetic nonequilibrium. The magnetic field expands outward in a process that opens the field lines and produces a tangential discontinuity in the magnetic field. In the presence of plasma resistivity, the resulting current sheet is the site of rapid reconnection, leading to an impulsive release of magnetic energy, fast flows, and the ejection of a plasmoid. We relate these results to previous studies of force-free fields and to the properties of the open-field configuration. We show that the field lines in an arcade are forced open when the magnetic energy approaches (but is still below) the open-field energy, creating a partially open field in which most of the field lines extend away from the solar surface. Preliminary application of this model to helmet streamers indicates that it is relevant to the initiation of coronal mass ejections.


Journal of Geophysical Research | 1999

Magnetohydrodynamic modeling of the solar corona during Whole Sun Month

J. A. Linker; Zoran Mikic; D. A. Biesecker; R. J. Forsyth; Sarah E. Gibson; Alan J. Lazarus; A. Lecinski; Pete Riley; A. Szabo; B. J. Thompson

The Whole Sun Month campaign (August 10 to September 8, 1996) brought together a wide range of space-based and ground-based observations of the Sun and the interplanetary medium during solar minimum. The wealth of data collected provides a unique opportunity for testing coronal models. We develop a three-dimensional magnetohydrodynamic (MHD) model of the solar corona (from 1 to 30 solar radii) applicable to the WSM time period, using measurements of the photospheric magnetic field as boundary conditions for the calculation. We compare results from the computation with daily and synoptic white-light and emission images obtained from ground-based observations and the SOHO spacecraft and with solar wind measurements from the Ulysses and WIND spacecraft. The results from the MHD computation show good overall agreement with coronal and interplanetary structures, including the position and shape of the streamer belt, coronal hole boundaries, and the heliospheric current sheet. From the model, we can infer the source locations of solar wind properties measured in interplanetary space. We find that the slow solar wind typically maps back to near the coronal hole boundary, while the fast solar wind maps to regions deeper within the coronal holes. Quantitative disagreements between the MHD model and observations for individual features observed during Whole Sun Month give insights into possible improvements to the model.


Physics of Plasmas | 1999

Magnetohydrodynamic modeling of the global solar corona

Zoran Mikic; Jon A. Linker; D. D. Schnack; Roberto Lionello; Alfonso G. Tarditi

A three-dimensional magnetohydrodynamic model of the global solar corona is described. The model uses observed photospheric magnetic fields as a boundary condition. A version of the model with a polytropic energy equation is used to interpret solar observations, including eclipse images of the corona, Ulysses spacecraft measurements of the interplanetary magnetic field, and coronal hole boundaries from Kitt Peak He 10 830 A maps and extreme ultraviolet images from the Solar Heliospheric Observatory. Observed magnetic fields are used as a boundary condition to model the evolution of the solar corona during the period February 1997–March 1998. A model with an improved energy equation and Alfven waves that is better able to model the solar wind is also presented.


The Astrophysical Journal | 2003

Coronal Mass Ejection: Initiation, Magnetic Helicity, and Flux Ropes. I. Boundary Motion-driven Evolution

Tahar Amari; J. F. Luciani; J. J. Aly; Zoran Mikic; Jon A. Linker

In this paper we study a class of three-dimensional magnetohydrodynamic model problems that may be useful to understand the role of twisted flux ropes in coronal mass ejections. We construct in a half-space a series of force-free bipolar configurations with different helicity contents and bring them into an evolution by imposing to their footpoints on the boundary slow motions converging toward the inversion line. For all the cases that have been computed, this process leads, after a phase of quasi-static evolution, to the formation of a twisted flux rope by a reconnection process and to the global disruption of the configuration. In contrast with the results of some previous studies, however, the rope is never in equilibrium. It thus appears that the presence of a rope in the preeruptive phase is not a necessary condition for the disruption but may be the product of the disruption itself. Moreover, the helicity keeps an almost constant value during the evolution, and the problem of the origin of the helicity content of an eruptive configuration appears to be that of the initial force-free state. In addition to these numerical simulations, we report some new relations for the time variations of the energy and the magnetic helicity and develop a simple analytical model in which the magnetic field evolution exhibits essential features quite similar to those observed during the quasi-static phase in the numerics.


The Astrophysical Journal | 1988

Dynamical evolution of a solar coronal magnetic field arcade

Zoran Mikic; D. C. Barnes; D. D. Schnack

Calculations of the long-term dynamical evolution of a solar coronal magnetic field arcade which is subjected to shearing photospheric flows are presented. The evolution is obtained by numerical solution of a subset of the resistive magnetohydrodynamic equations. For a simplified model of the bipolar magnetic field observed in the solar corona, it is found that photospheric flow produces a slow evolution of the magnetic field, with a buildup of magnetic energy. For certain photospheric shear profiles, the field configuration produced is linearly unstable to an ideal magnetohydrodynamic mode when the shear exceeds a critical value. The nonlinear evolution of this instability shows the spontaneous formation of current sheets. Reconnection of the magnetic field produces a rapid release of magnetic energy. The major fraction of the energy is dissipated resistively, while a small fraction is converted into kinetic energy of an ejected plasmoid. The relevance of these results to two-ribbon flares is discussed. 29 references.


The Astrophysical Journal | 2006

A Comparison between Global Solar Magnetohydrodynamic and Potential Field Source Surface Model Results

Pete Riley; Jon A. Linker; Zoran Mikic; Roberto Lionello; Stephen A. Ledvina; J. G. Luhmann

The large-scale, steady-state magnetic field configuration of the solar corona is typically computed using boundary conditions derived from photospheric observations. Two approaches are typically used: (1) potential field source surface (PFSS) models, and (2) the magnetohydrodynamic (MHD) models. The former have the advantage that they are simple to develop and implement, require relatively modest computer resources, and can resolve structure on scales beyond those that can be handled by current MHD models. However, they have been criticized because their basic assumptions are seldom met. Moreover, PFSS models cannot directly incorporate time-dependent phenomena, such as magnetic reconnection, and do not include plasma or its effects. In this study, we assess how well PFSS models can reproduce the large-scale magnetic structure of the corona by making detailed comparisons with MHD solutions at different phases in the solar activity cycle. In particular, we (1) compute the shape of the source surface as inferred from the MHD solutions to assess deviations from sphericity, (2) compare the coronal hole boundaries as determined from the two models, and (3) estimate the effects of nonpotentiality. Our results demonstrate that PFSS solutions often closely match MHD results for configurations based on untwisted coronal fields (i.e., when driven by line-of-sight magnetograms). It remains an open question whether MHD solutions will differ more substantially from PFSS solutions when vector magnetograms are used as boundary conditions. This will be addressed in the near future when vector data from SOLIS, the Solar Dynamics Observatory, and Solar-B become incorporated into the MHD models.


The Astrophysical Journal | 2009

Multispectral Emission of the Sun during the First Whole Sun Month: Magnetohydrodynamic Simulations

Roberto Lionello; Jon A. Linker; Zoran Mikic

We demonstrate that a three-dimensional magnetohydrodynamic (MHD) simulation of the corona can model its global plasma density and temperature structure with sufficient accuracy to reproduce many of the multispectral properties of the corona observed in extreme ultraviolet (EUV) and X-ray emission. The key ingredient to this new type of global MHD model is the inclusion of energy transport processes (coronal heating, anisotropic thermal conduction, and radiative losses) in the energy equation. The calculation of these processes has previously been confined to one-dimensional loop models, idealized two-dimensional computations, and three-dimensional active region models. We refer to this as the thermodynamic MHD model, and we apply it to the time period of Carrington rotation 1913 (1996 August 22 to September 18). The form of the coronal heating term strongly affects the plasma density and temperature of the solutions. We perform our calculation for three different empirical heating models: (1) a heating function exponentially decreasing in radius; (2) the model of Schrijver et al.; and (3) a model reproducing the heating properties of the quiet Sun and active regions. We produce synthetic emission images from the density and temperature calculated with these three heating functions and quantitatively compare them with observations from EUV Imaging Telescope on the Solar and Heliospheric Observatory and the soft X-ray telescope on Yohkoh. Although none of the heating models provide a perfect match, heating models 2 and 3 provide a reasonable match to the observations.


The Astrophysical Journal | 2003

Coronal Mass Ejection: Initiation, Magnetic Helicity, and Flux Ropes. II. Turbulent Diffusion-driven Evolution

Tahar Amari; J. F. Luciani; J. J. Aly; Zoran Mikic; Jon A. Linker

We consider a three-dimensional bipolar magnetic field B, occupying a half-space, which is driven into evolution by the slow turbulent diffusion of its normal component on the boundary. The latter is imposed by fixing the tangential component of the electric field and leads to flux cancellation. We first present general analytical considerations on this problem and then construct a class of explicit solutions in which B keeps evolving quasi-statically through a sequence of force-free configurations without exhibiting any catastrophic behavior. Thus, we report the results of a series of numerical simulations in which B evolves from different force-free states, the electric field on the boundary being imposed to have a vanishing electrostatic part (the latter condition is not enforced in the analytical model, and thus it is possible a priori for the results of the two types of calculations to be different). In all the cases, we find that the evolution conserves the magnetic helicity and exhibits two qualitatively different phases. The first one, during which a twisted flux rope is created, is slow and almost quasi-static, while the second one is associated with a disruption, which is confined for a small initial helicity and global for a large initial helicity. Our calculations may be relevant for modeling the coronal mass ejections that have been observed to occur in the late dispersion phase of an active region. In particular, they may allow us to understand the role played by a twisted flux rope in these events.


The Astrophysical Journal | 2011

A Model for the Sources of the Slow Solar Wind

Spiro K. Antiochos; Zoran Mikic; Viacheslav Titov; Roberto Lionello; Jon A. Linker

Models for the origin of the slow solar wind must account for two seemingly contradictory observations: the slow wind has the composition of the closed-field corona, implying that it originates from the continuous opening and closing of flux at the boundary between open and closed field. On the other hand, the slow wind also has large angular width, up to ~60?, suggesting that its source extends far from the open-closed boundary. We propose a model that can explain both observations. The key idea is that the source of the slow wind at the Sun is a network of narrow (possibly singular) open-field corridors that map to a web of separatrices and quasi-separatrix layers in the heliosphere. We compute analytically the topology of an open-field corridor and show that it produces a quasi-separatrix layer in the heliosphere that extends to angles far from the heliospheric current sheet. We then use an MHD code and MDI/SOHO observations of the photospheric magnetic field to calculate numerically, with high spatial resolution, the quasi-steady solar wind, and magnetic field for a time period preceding the 2008 August 1 total solar eclipse. Our numerical results imply that, at least for this time period, a web of separatrices (which we term an S-web) forms with sufficient density and extent in the heliosphere to account for the observed properties of the slow wind. We discuss the implications of our S-web model for the structure and dynamics of the corona and heliosphere and propose further tests of the model.


Journal of Computational Physics | 1987

Semi-implicit magnetohydrodynamic calculations

D. D. Schnack; Daniel C. Barnes; Zoran Mikic; Douglas S. Harned; E.J. Caramana

Abstract A semi-implicit algorithm for the solution of the nonlinear, three-dimensional, resistive MHD equations in cylindrical geometry is presented. The specific model assumes uniform density and pressure, although this is not a restriction of the method. The spatial approximation employs finite differences in the radial coordinate, and the pseudo-spectral algorithm in the periodic poloidal and axial coordinates. A leapfrog algorithm is used to advance wave-like terms; advective terms are treated with a simple predictor-corrector method. The semi-implicit term is introduced as a simple modification to the momentum equation. Dissipation is treated implicitly. The resulting algorithm is unconditionally stable with respect to normal modes. A general discussion of the semi-implicit method is given, and specific forms of the semi-implicit operator are compared in physically relevant test cases. Long-time simulations are presented.

Collaboration


Dive into the Zoran Mikic's collaboration.

Top Co-Authors

Avatar

Jon A. Linker

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Roberto Lionello

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Pete Riley

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yung Mok

University of California

View shared research outputs
Top Co-Authors

Avatar

Cooper Downs

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Tibor Török

University College London

View shared research outputs
Top Co-Authors

Avatar

Dusan Odstrcil

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

D. D. Schnack

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

J. G. Luhmann

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge