Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jon A. Schuller is active.

Publication


Featured researches published by Jon A. Schuller.


Nature Materials | 2010

Plasmonics for extreme light concentration and manipulation

Jon A. Schuller; Edward S. Barnard; Wenshan Cai; Young Chul Jun; Justin S. White; Mark L. Brongersma

The unprecedented ability of nanometallic (that is, plasmonic) structures to concentrate light into deep-subwavelength volumes has propelled their use in a vast array of nanophotonics technologies and research endeavours. Plasmonic light concentrators can elegantly interface diffraction-limited dielectric optical components with nanophotonic structures. Passive and active plasmonic devices provide new pathways to generate, guide, modulate and detect light with structures that are similar in size to state-of-the-art electronic devices. With the ability to produce highly confined optical fields, the conventional rules for light-matter interactions need to be re-examined, and researchers are venturing into new regimes of optical physics. In this review we will discuss the basic concepts behind plasmonics-enabled light concentration and manipulation, make an attempt to capture the wide range of activities and excitement in this area, and speculate on possible future directions.


Nature Materials | 2009

Engineering light absorption in semiconductor nanowire devices

Linyou Cao; Justin S. White; Joon-Shik Park; Jon A. Schuller; Bruce M. Clemens; Mark L. Brongersma

The use of quantum and photon confinement has enabled a true revolution in the development of high-performance semiconductor materials and devices. Harnessing these powerful physical effects relies on an ability to design and fashion structures at length scales comparable to the wavelength of electrons (approximately 1 nm) or photons (approximately 1 microm). Unfortunately, many practical optoelectronic devices exhibit intermediate sizes where resonant enhancement effects seem to be insignificant. Here, we show that leaky-mode resonances, which can gently confine light within subwavelength, high-refractive-index semiconductor nanostructures, are ideally suited to enhance and spectrally engineer light absorption in this important size regime. This is illustrated with a series of individual germanium nanowire photodetectors. This notion, together with the ever-increasing control over nanostructure synthesis opens up tremendous opportunities for the realization of a wide range of high-performance, nanowire-based optoelectronic devices, including solar cells, photodetectors, optical modulators and light sources.


Nano Letters | 2010

Semiconductor nanowire optical antenna solar absorbers.

Linyou Cao; Pengyu Fan; Alok P. Vasudev; Justin S. White; Z. Yu; Wenshan Cai; Jon A. Schuller; Shanhui Fan; Mark L. Brongersma

Photovoltaic (PV) cells can serve as a virtually unlimited clean source of energy by converting sunlight into electrical power. Their importance is reflected in the tireless efforts that have been devoted to improving the electrical and structural properties of PV materials. More recently, photon management (PM) has emerged as a powerful additional means to boost energy conversion efficiencies. Here, we demonstrate an entirely new PM strategy that capitalizes on strong broad band optical antenna effects in one-dimensional semiconductor nanostructures to dramatically enhance absorption of sunlight. We show that the absorption of sunlight in Si nanowires (Si NWs) can be significantly enhanced over the bulk. The NWs optical properties also naturally give rise to an improved angular response. We propose that by patterning the silicon layer in a thin film PV cell into an array of NWs, one can boost the absorption for solar radiation by 25% while utilizing less than half of the semiconductor material (250% increase in the light absorption per unit volume of material). These results significantly advance our understanding of the way sunlight is absorbed by one-dimensional semiconductor nanostructures and provide a clear, intuitive guidance for the design of efficient NW solar cells. The presented approach is universal to any semiconductor and a wide range of nanostructures; as such, it provides a new PV platform technology.


Nature Nanotechnology | 2013

Orientation of luminescent excitons in layered nanomaterials

Jon A. Schuller; Sinan Karaveli; Theanne Schiros; Keliang He; Shyuan Yang; Ioannis Kymissis; Jie Shan; Rashid Zia

In nanomaterials, optical anisotropies reveal a fundamental relationship between structural and optical properties. Directional optical properties can be exploited to enhance the performance of optoelectronic devices, optomechanical actuators and metamaterials. In layered materials, optical anisotropies may result from in-plane and out-of-plane dipoles associated with intra- and interlayer excitations, respectively. Here, we resolve the orientation of luminescent excitons and isolate photoluminescence signatures arising from distinct intra- and interlayer optical transitions. Combining analytical calculations with energy- and momentum-resolved spectroscopy, we distinguish between in-plane and out-of-plane oriented excitons in materials with weak or strong interlayer coupling-MoS₂ and 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA), respectively. We demonstrate that photoluminescence from MoS₂ mono-, bi- and trilayers originates solely from in-plane excitons, whereas PTCDA supports distinct in-plane and out-of-plane exciton species with different spectra, dipole strengths and temporal dynamics. The insights provided by this work are important for understanding fundamental excitonic properties in nanomaterials and designing optical systems that efficiently excite and collect light from exciton species with different orientations.


Optics Express | 2009

General properties of dielectric optical antennas

Jon A. Schuller; Mark L. Brongersma

Using Mie theory we derive a number of general results concerning the resonances of spherical and cylindrical dielectric antennas. Specifically, we prove that the peak scattering cross-section of radiation-limited antennas depends only on the resonance frequency and thus is independent of refractive index and size, a result which is valid even when the resonator is atomic-scale. Furthermore, we derive scaling limits for the bandwidth of dielectric antennas and describe a cylindrical mode which is unique in its ability to support extremely large bandwidths even when the particle size is deeply subwavelength. Finally, we show that higher Q antennas may couple more efficiently to an external load, but the optimal absorption cross-section depends only on the resonance frequency.


Optics Express | 2011

Dielectric particle and void resonators for thin film solar cell textures.

Sander A. Mann; Richard R. Grote; Richard M. Osgood; Jon A. Schuller

Using Mie theory and Rigorous Coupled Wave Analysis (RCWA) we compare the properties of dielectric particle and void resonators. We show that void resonators-low refractive index inclusions within a high index embedding medium-exhibit larger bandwidth resonances, reduced peak scattering intensity, different polarization anisotropies, and enhanced forward scattering when compared to their particle (high index inclusions in a low index medium) counterparts. We evaluate amorphous silicon solar cell textures comprising either arrays of voids or particles. Both designs support substantial absorption enhancements (up to 45%) relative to a flat cell with anti-reflection coating, over a large range of cell thicknesses. By leveraging void-based textures 90% of above-bandgap photons are absorbed in cells with maximal vertical dimension of 100 nm.


Optics Express | 2012

Nanophotonic light trapping with patterned transparent conductive oxides

Alok P. Vasudev; Jon A. Schuller; Mark L. Brongersma

Transparent conductive oxides (TCOs) play a crucial role in solar cells by efficiently transmitting sunlight and extracting photo-generated charge. Here, we show how nanophotonics concepts can be used to transform TCO films into effective photon management layers for solar cells. This is accomplished by patterning the TCO layer present on virtually every thin-film solar cell into an array of subwavelength beams that support optical (Mie) resonances. These resonances can be exploited to concentrate randomly polarized sunlight or to effectively couple it to guided and diffracted modes. We first demonstrate these concepts with a model system consisting of a patterned TCO layer on a thin silicon (Si) film and outline a design methodology for high-performance, TCO-based light trapping coatings. We then show that the short circuit current density from a 300 nm thick amorphous silicon (a-Si) cell with an optimized TCO anti-reflection coating can be enhanced from 19.9 mA/cm2 to 21.1 mA/cm2, out of a possible 26.0 mA/cm2, by using an optimized nanobeam array. The key differences and advantages over plasmonic light trapping layers will be discussed.


Nano Letters | 2015

Widely Tunable Infrared Antennas Using Free Carrier Refraction.

Tomer Lewi; Prasad P. Iyer; Nikita A. Butakov; Alexander Mikhailovsky; Jon A. Schuller

We demonstrate tuning of infrared Mie resonances by varying the carrier concentration in doped semiconductor antennas. We fabricate spherical silicon and germanium particles of varying sizes and doping concentrations. Single-particle infrared spectra reveal electric and magnetic dipole, quadrupole, and hexapole resonances. We subsequently demonstrate doping-dependent frequency shifts that follow simple Drude models, culminating in the emergence of plasmonic resonances at high doping levels and long wavelengths. These findings demonstrate the potential for actively tuning infrared Mie resonances by optically or electrically modulating charge carrier densities, thus providing an excellent platform for tunable metamaterials.


Applied Physics Letters | 2007

Thin film patterning by surface-plasmon-induced thermocapillarity

Lars Röntzsch; Karl-Heinz Heinig; Jon A. Schuller; Mark L. Brongersma

It is reported that standing surface-plasmon-polariton (SPP) waves can cause regular thickness undulations of thin polymethyl methacrylate (PMMA) films above a metallic substrate. Ripples, rings, and hillock arrays with long-range order were found. Numerical calculations reveal that periodic in-plane temperature profiles are generated in the PMMA due to the nonradiative damping of SPP interference patterns. Computer simulations on the temperature-gradient-driven mass transport confirm that thermocapillarity is the dominating mechanism of the observed surface patterning.


Physical Review B | 2015

Beam engineering for selective and enhanced coupling to multipolar resonances

Tanya Das; Prasad P. Iyer; Ryan A. DeCrescent; Jon A. Schuller

The ability to control multipolar light-matter interactions in metamaterials and other photonic systems has traditionally relied on engineering the physical properties of the resonators. In this paper, the authors follow the reverse approach. By tailoring the optical beam that illuminates a spherical nanoparticle, they demonstrate selective and enhanced coupling to the optical modes excited on the nanoparticle.

Collaboration


Dive into the Jon A. Schuller's collaboration.

Top Co-Authors

Avatar

Mark L. Brongersma

Geballe Laboratory for Advanced Materials

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Prasad P. Iyer

University of California

View shared research outputs
Top Co-Authors

Avatar

Tomer Lewi

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge