Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jon Berg-Johnsen is active.

Publication


Featured researches published by Jon Berg-Johnsen.


Experimental Cell Research | 2003

Stem cells from the adult human brain develop into functional neurons in culture.

Ulf Westerlund; Morten C. Moe; Mercy Varghese; Jon Berg-Johnsen; Marcus Ohlsson; Iver A. Langmoen; Mikael Svensson

Recent research communications indicate that the adult human brain contains undifferentiated, multipotent precursors or neural stem cells. It is not known, however, whether these cells can develop into fully functional neurons. We cultured cells from the adult human ventricular wall as neurospheres and passed them at the individual cell level to secondary neurospheres. Following dissociation and plating, the cells developed the antigen profile of the three main cell types in the brain (GFAP, astrocytes; O2, oligodendrocytes; and beta-III-tubulin/NeuN, neurons). More importantly, the cells developed the electrophysiological profiles of neurons and glia. Over a period of 3 weeks, neuron-like cells went through the same phases as neurons do during development in vivo, including up-regulation of inward Na+ -currents, drop in input resistance, shortening of the action potential, and hyperpolarization of the cell membrane. The cells developed overshooting action potentials with a mature configuration. Recordings in voltage-clamp mode displayed both the fast inactivating TTX-sensitive sodium current (INa) underlying the rising phase of the action potential and the two potassium currents terminating the action potential in mature neurons (IA and IK, sensitive to 4-AP and TEA, respectively). We have thus demonstrated that the human ventricular wall contains multipotent cells that can differentiate into functionally mature neurons.


Brain Research | 1990

Mechanisms concerned in the direct effect of isoflurane on rat hippocampal and human neocortical neurons

Jon Berg-Johnsen; Iver A. Langmoen

The effect of isoflurane on postsynaptic neurons was studied by intracellular recordings from rat hippocampus and human neocortex in vitro. Isoflurane caused a hyperpolarization of the cell membrane. The hyperpolarization was reversed (although incompletely in some neurons) by increasing the membrane potential. The reversal potential was -80 +/- 12 mV (mean +/- S.D.) or 12 +/- 6 mV negative to the resting membrane potential. Potassium channel blockers reduced the isoflurane-induced hyperpolarization, while chloride loading was without effect. The transient depolarization preceding the hyperpolarization in some of the neurons was not reversed by hyperpolarization. The action potential was prolonged by 19 +/- 3% due to a slower rate of rise. The rise time was almost doubled. Firing threshold was increased by 4 +/- 3 mV (relative to the reference electrode). Subthreshold inward rectification was reduced or abolished. Some cells showed subthreshold outward rectification during isoflurane administration. These results suggest that isoflurane depressed neuronal excitability by (1) hyperpolarizing the cell membrane, at least partly by an increase in potassium conductance, (2) slowing the rate of rise of the action potential, presumably due to interference with the fast sodium channel, (3) decreasing subthreshold inward rectification and (4) increasing firing threshold.


Neurosurgery | 2008

A comparison between stem cells from the adult human brain and from brain tumors.

Mercy Varghese; Havard Olstorn; Cecilie Sandberg; Einar Osland Vik-Mo; Paul Noordhuis; Monica Nistér; Jon Berg-Johnsen; Morten C. Moe; Iver A. Langmoen

OBJECTIVE To directly compare stem cells from the normal adult human brain (adult human neural stem cells [AHNSC]), Grade II astrocytomas (AC II), and glioblastoma multiforme (GBM), with respect to proliferative and tumor-forming capacity and differentiation potential. METHODS Cells were isolated from tissue obtained during epilepsy surgery (AHNSCs) or tumor surgery (glioma stem cells [GSC]). They were cultured and investigated in vitro or after transplantation in immunodeficient mice. RESULTS Under identical experimental conditions, the following were found: 1) GBM stem cells formed tumors after orthotopic transplantation; AHNSCs showed no sign of tumor formation; 2) GSCs showed a significantly higher growth rate and self-renewal capacity; 3) both the growth rate and telomerase expression were high in GSCs and correlated with malignancy grade (GBM higher than AC II); AHNSCs had low telomerase expression; 4) GSCs invaded normal neurospheres, not vice versa; 5) both AHNSCs and stem cells from AC II and GBM responded to differentiation cues with a dramatic decrease in the proliferation index (Ki-67); 6) GSCs differentiated faster than AHNSCs; 7) upon differentiation, AHNSCs produced normal glia and neurons; GSCs produced morphologically aberrant cells often expressing both glial and neuronal antigens; and 8) differentiation of AHNSCs resulted in 2 typical functional phenotypes: neurons (high electrical membrane resistance, ability to generate action potentials) and glial cells (low membrane resistance, no action potentials). In contrast, GSCs resulted in only 1 functional phenotype: cells with high electrical resistance and active membrane properties capable of generating action potentials. CONCLUSION AHNSCs and stem cells from AC II and GBM differ with respect to proliferation, tumor-forming capacity, and rate and pattern of differentiation.


Neurosurgery | 2005

Development of neuronal networks from single stem cells harvested from the adult human brain.

Morten C. Moe; Ulf Westerlund; Mercy Varghese; Jon Berg-Johnsen; Mikael Svensson; Iver A. Langmoen

OBJECTIVE: It was long held as an axiom that new neurons are not produced in the adult human brain. More recent studies, however, have identified multipotent cells whose progeny express glial or neuronal markers. This discovery may lead to new therapeutic strategies against central nervous system disorders by transplanting stem cells that have been propagated in vitro. Still, it is not known whether stem cells from the adult human brain retain the potential to mature into neurons that integrate and communicate in a network. METHODS: We cultured cells from the ventricular wall of the adult human brain as monoclonal neurospheres. After two passages, the neurospheres were dissociated and the cells were allowed to differentiate. After 4 weeks of maturation, the cells were studied by immunocytochemistry, confocal microscopy, and whole-cell patch-clamp. RESULTS: We show that monoclonal stem cells harvested from the ventricular wall of the adult human brain develop into mature neurons with functional glutamate receptors and glutamatergic nerve terminals. By patching pairs of cells simultaneously, we also present direct evidence for synaptic communication between neurons developed from the same monoclonal cell. CONCLUSION: Neural stem cells harvested from the adult human brain retain the potential to mature into fully differentiated neurons that integrate and communicate by synapses. This opens a possible future scenario of autotransplantation, in which stem cells are harvested from small biopsies of the ventricular wall and propagated in vitro before transplantation.


Acta Anaesthesiologica Scandinavica | 2006

Volatile anaesthetics depolarize neural mitochondria by inhibiton of the electron transport chain

R. Bains; Morten C. Moe; Geir Arne Larsen; Jon Berg-Johnsen; Morten Larsen Vinje

Background:  The mitochondrial membrane potential (ΔΨm) controls the generation of adenosine triphosphate (ATP) and reactive oxygen species, and sequesteration of intracellular Ca2+[Ca2+]i. Clinical concentrations of sevoflurane affect the ΔΨm in neural mitochondria, but the mechanisms remain elusive. The aim of the present study was to compare the effect of isoflurane and sevoflurane on ΔΨm in rat pre‐synaptic terminals (synaptosomes), and to investigate whether these agents affect ΔΨm by inhibiting the respiratory chain.


Journal of Cerebral Blood Flow and Metabolism | 1993

Redistribution of Glutamate and Glutamine in Slices of Human Neocortex Exposed to Combined Hypoxia and Glucose Deprivation in vitro

Jan-Erik Aas; Jon Berg-Johnsen; Elisabeth Hegstad; Jon H. Laake; Iver A. Langmoen; Ole Petter Ottersen

This study was undertaken to elucidate the roles of neurons and glial cells in the handling of glutamate and glutamine, a glutamate precursor, during cerebral ischemia. Slices (400–600 μm) from human neocortex obtained during surgery for epilepsy or brain tumors were incubated in artificial cerebrospinal fluid and subjected to 30 min of combined hypoxia and glucose deprivation (an in vitro model of brain ischemia). These slices, and control slices that had not been subjected to “ischemic” conditions, were then fixed and embedded. Ultrathin sections were processed according to a postembedding immunocytochemical method with polyclonal antibodies raised against glutamate or glutamine, followed by colloidal gold-labeled secondary antibodies. The gold particle densities over various tissue profiles were calculated from electron micrographs using a specially designed computer program. Combined hypoxia and glucose deprivation caused a reduced glutamate immunolabeling in neuronal somata, while that of glial processes increased. Following 1 h of recovery, the glutamate labeling of neuronal somata declined further to very low values, compared to control slices. The glutamate labeling of glial cells returned to normal levels following recovery. In axon terminals, no consistent change in the level of glutamate immunolabeling was observed. Immunolabeling of glutamine was low in both nerve terminals and neuronal somata in normal slices and was reduced to nondetectable levels in nerve terminals upon hypoxia and glucose deprivation. This treatment was also associated with a reduced glutamine immunolabeling in glial cells. Reversed glutamate uptake due to perturbations of the transmembrane ion concentrations and membrane potential probably contributes to the loss of neuronal glutamate under “ischemic” conditions. The increased glutamate labeling of glial cells under the same conditions can best be explained by assuming that glial cells resist a reversal of glutamate uptake, and that their ability to convert glutamate into glutamine is compromised due to the energy failure. The persistence of a nerve terminal pool of glutamate is compatible with recent biochemical data indicating that the exocytotic glutamate release is contingent on an adequate energy supply and therefore impeded during ischemia.


Journal of Hematotherapy & Stem Cell Research | 2003

Artificial Niches for Human Adult Neural Stem Cells: Possibility for Autologous Transplantation Therapy

Charles Y. Liu; Ulf Westerlund; Mikael Svensson; Morten C. Moe; Mercy Varghese; Jon Berg-Johnsen; Michael L.J. Apuzzo; David A. Tirrell; Iver A. Langmoen

Cellular transplantation therapy is thought to play a central role in the concept of restorative neurosurgery, which aims to restore function to the damaged nervous system. Stem cells represent a potentially renewable source of transplantable cells. However, control of the behavior of these cells, both in the process of clonogenic expansion and post-transplantation, represents formidable challenges. Stem cell behavior is thought to be directed by extracellular signals in their in vivo niches, many of which are protein or peptide based. As only one example, activation of Notch plays an important role in normal development and is the strongest known signal for stem cells to choose glial over neuronal fates. Therefore, artificial extracellular matrix proteins represent a potentially powerful tool to custom design artificial niches to strategically control stem cell behavior. We have developed a family of aECM proteins that incorporate the active domains of the DSL ligands to the Notch receptor into an elastin-based backbone. The development of our DSL-elastin artificial proteins demonstrates the design strategy and methodology for the production of bioactive artificial extracellular matrix proteins aimed at modulating stem cell behavior, and this method can be used to design other bioactive aECM proteins. In addition, we have developed a method for the isolation and characterization of adult human neural stem cells from periventricular tissue harvested from living patients. This paper reviews cellular transplantation therapy from the clinical perspective and summarizes ongoing work aimed at exploring the intriguing possibility of autologous transplantation, whereby neural stem cells can be harvested from adult patients, expanded or modified in vitro in artificial niches, and retransplanted into the original patient.


Brain Research | 2006

Depolarization of mitochondria in isolated CA1 neurons during hypoxia, glucose deprivation and glutamate excitotoxicity.

Geir Arne Larsen; Håvard K. Skjellegrind; Jon Berg-Johnsen; Morten C. Moe; Morten Larsen Vinje

During cerebral ischemia neuronal injury is induced by a combination of hypoxia, hypoglycemia and glutamate excitotoxicity. To evaluate the relative importance of these factors on the mitochondrial function, acutely isolated rat hippocampal CA1 neurons were loaded with Rhodamine 123 to monitor the mitochondrial membrane potential (Deltapsim). During 15 min of hypoxia, a rapid and complete mitochondrial depolarization was observed in all neurons also when complex V of the respiratory chain was blocked by oligomycin. Glucose deprivation caused 77% of the neurons to loose the Deltapsim completely, whereas most oligomycin-treated neurons retained their Deltapsim. During oxygen and glucose deprivation, a similar mitochondrial response was seen as in hypoxia. Although 15 min of high glutamate concentration (1 mM) provoked a rapid and irreversible increase in [Ca2+]i, only 25% of the neurons lost the Deltapsim. All oligomycin-treated neurons, however, lost the Deltapsim during glutamate exposure. In conclusion, the mitochondrial function of acutely isolated CA1 neurons is more sensitive to hypoxia than to glucose deprivation and glutamate excitotoxicity.


Acta Neurochirurgica | 2011

Intra-operative MRI facilitates tumour resection during trans-sphenoidal surgery for pituitary adenomas

Jon Ramm-Pettersen; Jon Berg-Johnsen; Per Kristian Hol; Sumit Roy; Jens Bollerslev; T. Schreiner; Eirik Helseth

BackgroundDuring trans-sphenoidal microsurgical resection of pituitary adenomas, the extent of resection may be difficult to assess, especially when extensive suprasellar and parasellar growth has occurred. In this prospective study, we investigated whether intra-operative magnetic resonance imaging (iMRI) can facilitate tumour resection.MethodsTwenty patients with macroadenomas, (16 non-functioning, three growth-hormone secreting and one pharmaco-resistant prolactinoma) were selected for surgery in the iMRI. The mean tumour diameter was 27 mm (range 11–41). The mean parasellar grade, according to the Knosp classification, was 2.3. Pre-operative coronal and sagittal T1-weighted and T2-weighted images were obtained. The trans-sphenoidal tumour resection was performed at the edge of the tunnel of a Signa SP 0.5-Tesla MRI. The surgeon aimed at a radical tumour resection that was followed by a peri-operative MRI scan. When a residual tumour was visualised and deemed resectable, an extended resection was performed, followed by another MRI scan. This procedure was repeated until the imaging results were satisfactory. In all patients, we were able to obtain images to assess the extent of resection and to classify the resection as either total or subtotal.ResultsAfter primary resection, eight out of 20 cases were classified as total resections. A second resection was performed in 11 of 12 cases classified as subtotal resections, and in four of these, total resection was achieved. A third resection was performed in three of the remaining seven cases with subtotal resections, but we did not achieve total resection in any of these cases. Therefore, the use of iMRI increased the number of patients with total resection from 8/20 (40%) to 12/20 (60%). The only observed complication was a transient spinal fluid leakage.ConclusionIntra-operative MRI during trans-sphenoidal microsurgery is useful in selected patients for a safe and more complete resection.


Stem Cells and Development | 2009

Isolation of Human Multipotent Neural Progenitors from Adult Filum Terminale

Mercy Varghese; Havard Olstorn; Jon Berg-Johnsen; Morten C. Moe; Wayne Murrell; Iver A. Langmoen

Stem cells have been isolated from several CNS regions, including the spinal cord. However, the terminal end of the spinal cord, filum terminale, has been referred to as a fibrovascular tag without neurogenic potential and of no clinical significance. Recently, we were fortunate to acquire some samples of this tissue. We show for the first time that progenitor cells exhibiting the hallmarks of stem cells can be isolated from adult human filum terminale (FTNPs). More specifically, FTNPs self-renew and proliferate to form neurospheres, and exhibit tripotent differentiation into neurons, astrocytes, and oligodendrocytes. Equally important, FTNPs develop the electrophysiological profile of neurons and glia. Whole-cell patch-clamp recordings show beta-III-tubulin(+) neurons exhibiting overshooting action potentials, displaying both the fast inactivating TTX-sensitive sodium current as well as 4-AP and TEA sensitive potassium currents. To assess potency in vivo, FTNPs were transplanted into the posterior periventricular region of control or ischemic rat brains. Despite a vigorous immune response against the xenograft, FTNPs survived and were found not only in the graft area but had also migrated to the lesioned CA1 region. Notwithstanding the immune response, FTNPs differentiated into astrocytes, but no neuronal differentiation was observed in the transplant milieu tested. However, neuronal differentiation in vivo cannot be ruled out and assessment of the conditions necessary to promote neurogenesis in vivo requires more research. Significantly, no tumor formation or aberrant cell morphology was seen in or adjacent to the graft area. Thus, filum terminale provides a novel source of adult human neural progenitor cells that develop into functional neurons with possible clinical applications.

Collaboration


Dive into the Jon Berg-Johnsen's collaboration.

Top Co-Authors

Avatar

Morten C. Moe

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jarle Sundseth

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar

Mikael Svensson

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge