Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Morten C. Moe is active.

Publication


Featured researches published by Morten C. Moe.


Acta Ophthalmologica | 2012

Molecular mechanisms of retinal pigment epithelium damage and development of age‐related macular degeneration

Kati Kinnunen; Goran Petrovski; Morten C. Moe; András Berta; Kai Kaarniranta

Age‐related macular degeneration (AMD) is attributed to a complex interaction of genetic and environmental factors. It is characterized by degeneration involving the retinal photoreceptors, retinal pigment epithelium (RPE) and Bruch’s membrane, as well as alterations in choroidal capillaries. AMD pathogenesis is strongly associated with chronic oxidative stress and inflammation that ultimately lead to protein damage, aggregation and degeneration of RPE. Specific degenerative findings for AMD are accumulation of intracellular lysosomal lipofuscin and extracellular drusens. In this review, we discuss thoroughly RPE‐derived mechanisms in AMD pathology.


Experimental Cell Research | 2003

Stem cells from the adult human brain develop into functional neurons in culture.

Ulf Westerlund; Morten C. Moe; Mercy Varghese; Jon Berg-Johnsen; Marcus Ohlsson; Iver A. Langmoen; Mikael Svensson

Recent research communications indicate that the adult human brain contains undifferentiated, multipotent precursors or neural stem cells. It is not known, however, whether these cells can develop into fully functional neurons. We cultured cells from the adult human ventricular wall as neurospheres and passed them at the individual cell level to secondary neurospheres. Following dissociation and plating, the cells developed the antigen profile of the three main cell types in the brain (GFAP, astrocytes; O2, oligodendrocytes; and beta-III-tubulin/NeuN, neurons). More importantly, the cells developed the electrophysiological profiles of neurons and glia. Over a period of 3 weeks, neuron-like cells went through the same phases as neurons do during development in vivo, including up-regulation of inward Na+ -currents, drop in input resistance, shortening of the action potential, and hyperpolarization of the cell membrane. The cells developed overshooting action potentials with a mature configuration. Recordings in voltage-clamp mode displayed both the fast inactivating TTX-sensitive sodium current (INa) underlying the rising phase of the action potential and the two potassium currents terminating the action potential in mature neurons (IA and IK, sensitive to 4-AP and TEA, respectively). We have thus demonstrated that the human ventricular wall contains multipotent cells that can differentiate into functionally mature neurons.


European Journal of Neuroscience | 2006

Neurogenesis in the adult spinal cord in an experimental model of multiple sclerosis

Alexandre I. Danilov; Ruxandra Covacu; Morten C. Moe; Iver A. Langmoen; Clas B. Johansson; Tomas Olsson; Lou Brundin

Multiple sclerosis is an inflammatory disease of the central nervous system characterized by inflammation, demyelination, axonal degeneration and accumulation of neurological disability. Previously, we demonstrated that stem cells constitute a possible endogenous source for remyelination. We now addressed the question of whether neurogenesis can occur in neuroinflammatory lesions. We demonstrated that, in experimental autoimmune encephalomyelitis, induced in rats 1,1′‐dioctadecyl‐6,6′‐di(4sulphopentyl)‐3,3,3′,3′tetramethylindocarbocyanin(DiI)‐labelled ependymal cells not only proliferated but descendants migrated to the area of neuroinflammation and differentiated into cells expressing the neuronal markers β‐III‐tubulin and NeuN. Furthermore, these cells were immunoreactive for bromodeoxyuridine and PCNA, markers for cells undergoing cell proliferation. Using the whole‐cell patch‐clamp technique on freshly isolated 1, DiI‐labelled cells from spinal cord lesions we demonstrated the ability of these cells to fire overshooting action potentials similar to those of immature neurones. We thus provide the first evidence for the initiation of neurogenesis in neuroinflammatory lesions in the adult spinal cord.


Stem Cells | 2006

Nitric Oxide Exposure Diverts Neural Stem Cell Fate from Neurogenesis Towards Astrogliogenesis

Ruxandra Covacu; Alexandre I. Danilov; Bo Sonnich Rasmussen; Katarina Hallén; Morten C. Moe; Anna Lobell; Clas B. Johansson; Mikael Svensson; Tomas Olsson; Lou Brundin

Regeneration of cells in the central nervous system is a process that might be affected during neurological disease and trauma. Because nitric oxide (NO) and its derivatives are powerful mediators in the inflammatory cascade, we have investigated the effects of pathophysiological concentrations of NO on neurogenesis, gliogenesis, and the expression of proneural genes in primary adult neural stem cell cultures. After exposure to NO, neurogenesis was downregulated, and this corresponded to decreased expression of the proneural gene neurogenin‐2 and β‐III‐tubulin. The decreased ability to generate neurons was also found to be transmitted to the progeny of the cells. NO exposure was instead beneficial for astroglial differentiation, which was confirmed by increased activation of the Janus tyrosine kinase/signal transducer and activator of transcription transduction pathway. Our findings reveal a new role for NO during neuroinflammatory conditions, whereby its proastroglial fate‐determining effect on neural stem cells might directly influence the neuroregenerative process.


Neurosurgery | 2008

A comparison between stem cells from the adult human brain and from brain tumors.

Mercy Varghese; Havard Olstorn; Cecilie Sandberg; Einar Osland Vik-Mo; Paul Noordhuis; Monica Nistér; Jon Berg-Johnsen; Morten C. Moe; Iver A. Langmoen

OBJECTIVE To directly compare stem cells from the normal adult human brain (adult human neural stem cells [AHNSC]), Grade II astrocytomas (AC II), and glioblastoma multiforme (GBM), with respect to proliferative and tumor-forming capacity and differentiation potential. METHODS Cells were isolated from tissue obtained during epilepsy surgery (AHNSCs) or tumor surgery (glioma stem cells [GSC]). They were cultured and investigated in vitro or after transplantation in immunodeficient mice. RESULTS Under identical experimental conditions, the following were found: 1) GBM stem cells formed tumors after orthotopic transplantation; AHNSCs showed no sign of tumor formation; 2) GSCs showed a significantly higher growth rate and self-renewal capacity; 3) both the growth rate and telomerase expression were high in GSCs and correlated with malignancy grade (GBM higher than AC II); AHNSCs had low telomerase expression; 4) GSCs invaded normal neurospheres, not vice versa; 5) both AHNSCs and stem cells from AC II and GBM responded to differentiation cues with a dramatic decrease in the proliferation index (Ki-67); 6) GSCs differentiated faster than AHNSCs; 7) upon differentiation, AHNSCs produced normal glia and neurons; GSCs produced morphologically aberrant cells often expressing both glial and neuronal antigens; and 8) differentiation of AHNSCs resulted in 2 typical functional phenotypes: neurons (high electrical membrane resistance, ability to generate action potentials) and glial cells (low membrane resistance, no action potentials). In contrast, GSCs resulted in only 1 functional phenotype: cells with high electrical resistance and active membrane properties capable of generating action potentials. CONCLUSION AHNSCs and stem cells from AC II and GBM differ with respect to proliferation, tumor-forming capacity, and rate and pattern of differentiation.


Neurosurgery | 2005

Development of neuronal networks from single stem cells harvested from the adult human brain.

Morten C. Moe; Ulf Westerlund; Mercy Varghese; Jon Berg-Johnsen; Mikael Svensson; Iver A. Langmoen

OBJECTIVE: It was long held as an axiom that new neurons are not produced in the adult human brain. More recent studies, however, have identified multipotent cells whose progeny express glial or neuronal markers. This discovery may lead to new therapeutic strategies against central nervous system disorders by transplanting stem cells that have been propagated in vitro. Still, it is not known whether stem cells from the adult human brain retain the potential to mature into neurons that integrate and communicate in a network. METHODS: We cultured cells from the ventricular wall of the adult human brain as monoclonal neurospheres. After two passages, the neurospheres were dissociated and the cells were allowed to differentiate. After 4 weeks of maturation, the cells were studied by immunocytochemistry, confocal microscopy, and whole-cell patch-clamp. RESULTS: We show that monoclonal stem cells harvested from the ventricular wall of the adult human brain develop into mature neurons with functional glutamate receptors and glutamatergic nerve terminals. By patching pairs of cells simultaneously, we also present direct evidence for synaptic communication between neurons developed from the same monoclonal cell. CONCLUSION: Neural stem cells harvested from the adult human brain retain the potential to mature into fully differentiated neurons that integrate and communicate by synapses. This opens a possible future scenario of autotransplantation, in which stem cells are harvested from small biopsies of the ventricular wall and propagated in vitro before transplantation.


Neurosurgery | 2007

Transplantation of stem cells from the adult human brain to the adult rat brain.

Havard Olstorn; Morten C. Moe; Geir Ketil Røste; Tjerk Bueters; Iver A. Langmoen

OBJECTIVETo investigate the migration, proliferation, and differentiation of stem cells and neural progenitor cells (NPCs) from the adult human brain after transplantation into adult rodent brains. METHODSAdult human NPCs were obtained from temporal lobe specimens removed because of medical intractable epilepsy. The cells were transplanted into the posterior periventricular region above the hippocampus in the brains of either healthy adult rats (control) or rats with selective injury of the hippocampal CA1 region (global ischemia). RESULTSIn the control animals, grafted cells were mainly distributed from the site of transplantation toward the midline along white matter tracts. The density of transplanted cells elsewhere, including the hippocampus, was low and apparently random. In animals with CA1 damage, NPCs showed targeted migration into the injured area. Cell survival at 10 weeks was 4.7 ± 0.3% (control, n = 3) and 3.7 ± 1.1% (ischemia, n = 3); at 16 weeks, cell survival was 3.4 ± 0.6% (control, n = 2) and 7.2 ± 1.5% (ischemia, n = 2), i.e., comparable to what has been observed earlier when transplanting embryonic tissue into the human brain or progenitor cells between inbred rats. The number of dividing cells decreased with time. Sixteen weeks after transplantation, 4 ± 1% (n = 4) of the cells showed proliferative activity. We did not observe signs of tumor formation or aberrant cell morphology. Neuronal differentiation was much slower than what has been observed earlier in vitro or after transplantation to the developing nervous system, and 16 weeks after transplantation many surviving cells were still in maturation. CONCLUSIONThe present study shows that adult human NPCs survive, show targeted migration, proliferate, and differentiate after grafting into the adult rat brain.


Experimental Eye Research | 2012

Ex vivo expanded autologous limbal epithelial cells on amniotic membrane using a culture medium with human serum as single supplement.

Aboulghassem Shahdadfar; Kristiane Haug; Meeta Pathak; Liv Drolsum; Ole Kristoffer Olstad; Erik Johnsen; Goran Petrovski; Morten C. Moe; Bjørn Nicolaissen

In patients with limbal stem cell deficiency (LSCD), transplantation of ex vivo expanded human limbal epithelial cells (HLECs) can restore the structural and functional integrity of the corneal surface. However, the protocol for cultivation and transplantation of HLECs differ significantly, and in most protocols growth additives such as cholera toxins, exogenous growth factors, hormones and fetal calf serum are used. In the present article, we compare for the first time human limbal epithelial cells (HLECs) cultivated on human amniotic membrane (HAM) in a complex medium (COM) including fetal bovine serum to a medium with human serum as single growth supplement (HSM), and report on our first examinations of HLECs expanded in autologous HSM and used for transplant procedures in patients with LSCD. Expanded HLECs were examined by genome-wide microarray, RT-PCR, Western blotting, and for cell viability, morphology, expression of immunohistochemical markers and colony forming efficiency. Cultivation of HLECs in HSM produced a multilayered epithelium where cells with markers associated with LESCs were detected in the basal layers. There were few transcriptional differences and comparable cell viability between cells cultivated in HSM and COM. The p63 gene associated with LESCs were expressed 3.5 fold more in HSM compared to COM, and Western blotting confirmed a stronger p63α band in HSM cultures. The cornea-specific keratin CK12 was equally found in both culture conditions, while there were significantly more CK3 positive cells in HSM. Cells in epithelial sheets on HAM remaining after transplant surgery of patients with LSCD expressed central epithelial characteristics, and dissociated cells cultured at low density on growth-arrested fibroblasts produced clones containing 21 ± 12% cells positive for p63α (n = 3). In conclusion, a culture medium without growth additives derived from animals or from animal cell cultures and with human serum as single growth supplement may serve as an equivalent replacement for the commonly used complex medium for ex vivo expansion of HLECs on HAM.


Experimental Eye Research | 2009

A comparison of epithelial and neural properties in progenitor cells derived from the adult human ciliary body and brain.

Morten C. Moe; Rebecca S. Kolberg; Cecilie Sandberg; Einar Osland Vik-Mo; Havard Olstorn; Mercy Varghese; Iver A. Langmoen; Bjørn Nicolaissen

Cells isolated from the ciliary body (CB) of the adult human eye possess properties of retinal stem/progenitor cells and can be propagated as spheres in culture. As these cells are isolated from a non-neural epithelium which has neuroepithelial origin, they may have both epithelial and neural lineages. Since it is the properties of neural progenitor cells that are sought after in a future scenario of autotransplantation, we wanted to directly compare human CB spheres with neurospheres derived from the human subventricular zone (SVZ), which is the best characterized neural stem cell niche in the CNS of adults. The CB epithelium was dissected from donor eyes (n = 8). Biopsies from the ventricular wall were harvested during neurosurgery due to epilepsy (n = 7). CB and SVZ tissue were also isolated from Brown Norwegian rats. Dissociated single cells were cultivated in a sphere-promoting medium and passaged every 10-30 days. Fixed spheres were studied by immunohistochemistry, quantitative RT-PCR and scanning/transmission electron microscopy. We found that both CB and SVZ spheres contained a mixed population of cells embedded in extracellular matrix. CB spheres, in contrast to SVZ neurospheres, contained pigmented cells with epithelial morphology that stained for cytokeratins (3/12 + 19), were connected through desmosomes and tight-junctions and produced PEDF. Markers of neural progenitors (nestin, Sox-2, GFAP) were significantly lower expressed in human CB compared to SVZ spheres, and nestin positive cells in the CB spheres also contained pigment. There was higher expression of EGF and TGF-beta receptors in human CB spheres, and a comparative greater activation of the canonical Wnt pathway. These results indicate that adult human CB spheres contain progenitor cells with epithelial properties and limited expression of neural progenitor markers compared to CNS neurospheres. Further studies mapping the regulation between epithelial and neural properties in the adult human CB spheres are vital to fully utilize them as a clinical source of retinal progenitor cells in the future.


Acta Anaesthesiologica Scandinavica | 2006

Volatile anaesthetics depolarize neural mitochondria by inhibiton of the electron transport chain

R. Bains; Morten C. Moe; Geir Arne Larsen; Jon Berg-Johnsen; Morten Larsen Vinje

Background:  The mitochondrial membrane potential (ΔΨm) controls the generation of adenosine triphosphate (ATP) and reactive oxygen species, and sequesteration of intracellular Ca2+[Ca2+]i. Clinical concentrations of sevoflurane affect the ΔΨm in neural mitochondria, but the mechanisms remain elusive. The aim of the present study was to compare the effect of isoflurane and sevoflurane on ΔΨm in rat pre‐synaptic terminals (synaptosomes), and to investigate whether these agents affect ΔΨm by inhibiting the respiratory chain.

Collaboration


Dive into the Morten C. Moe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liv Drolsum

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge