Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jon F. Ihlefeld is active.

Publication


Featured researches published by Jon F. Ihlefeld.


Physical Review Letters | 2012

Realizing optical magnetism from dielectric metamaterials.

James C. Ginn; Igal Brener; David W. Peters; Joel R. Wendt; Jeffrey Stevens; Paul Hines; Lorena I. Basilio; Larry K. Warne; Jon F. Ihlefeld; Paul G. Clem; Michael B. Sinclair

We demonstrate, for the first time, an all-dielectric metamaterial resonator in the mid-wave infrared based on high-index tellurium cubic inclusions. Dielectric resonators are desirable compared to conventional metallo-dielectric metamaterials at optical frequencies as they are largely angular invariant, free of ohmic loss, and easily integrated into three-dimensional volumes. With these low-loss, isotropic elements, disruptive optical metamaterial designs, such as wide-angle lenses and cloaks, can be more easily realized.


Applied Physics Letters | 2008

Optical band gap of BiFeO3 grown by molecular-beam epitaxy

Jon F. Ihlefeld; Nikolas J. Podraza; Zi-Kui Liu; R. C. Rai; X. S. Xu; Y. B. Chen; Jian Li; R. W. Collins; J. L. Musfeldt; X. Q. Pan; J. Schubert; R. Ramesh; D. G. Schlom

BiFeO3 thin films have been deposited on (001) SrTiO3 substrates by adsorption-controlled reactive molecular-beam epitaxy. For a given bismuth overpressure and oxygen activity, single-phase BiFeO3 films can be grown over a range of deposition temperatures in accordance with thermodynamic calculations. Four-circle x-ray diffraction reveals phase-pure, epitaxial films with ω rocking curve full width at half maximum values as narrow as 29arcsec (0.008°). Multiple-angle spectroscopic ellipsometry reveals a direct optical band gap at 2.74eV for stoichiometric as well as 5% bismuth-deficient single-phase BiFeO3 films.


Applied Physics Letters | 2008

Linear and nonlinear optical properties of BiFeO3

Amit Kumar; Nikolas J. Podraza; Sava Denev; Mariola Ramirez; Ying-Hao Chu; Lane W. Martin; Jon F. Ihlefeld; J. Schubert; Darrell G. Schlom; J. Orenstein; R. Ramesh; R. W. Collins; J. L. Musfeldt; Venkatraman Gopalan

Using spectroscopic ellipsometry, the refractive index and absorption versus wavelength of the ferroelectric antiferromagnet Bismuth Ferrite, BiFeO_3 is reported. The material has a direct band-gap at 442 nm wavelength (2.81 eV). Using optical second harmonic generation, the nonlinear optical coefficients were determined to be d_15/d_22 = 0.20 +/- 0.01, d_31/d_22 = 0.35 +/- 0.02, d_33/d_22 = -11.4 +/- 0.20 and |d_22| = 298.4 +/- 6.1 pm/V at a fundamental wavelength of 800 nm.


arXiv: Optics | 2014

Optical magnetic mirrors without metals

Sheng Liu; Michael B. Sinclair; Thomas S. Mahony; Young Chul Jun; Salvatore Campione; James C. Ginn; Daniel A. Bender; Joel R. Wendt; Jon F. Ihlefeld; Paul G. Clem; Jeremy B. Wright; Igal Brener

The reflection of an optical wave from metal, arising from strong interactions between the optical electric field and the free carriers of the metal, is accompanied by a phase reversal of the reflected electric field. A far less common route to achieving high reflectivity exploits strong interactions between the material and the optical magnetic field to produce a “magnetic mirror” that does not reverse the phase of the reflected electric field. At optical frequencies, the magnetic properties required for strong interaction can be achieved only by using artificially tailored materials. Here, we experimentally demonstrate, for the first time to the best of our knowledge, the magnetic mirror behavior of a low-loss all-dielectric metasurface at infrared optical frequencies through direct measurements of the phase and amplitude of the reflected optical wave. The enhanced absorption and emission of transverse-electric dipoles placed close to magnetic mirrors can lead to exciting new advances in sensors, photodetectors, and light sources.


Applied Physics Letters | 2007

Adsorption-controlled molecular-beam epitaxial growth of BiFeO3

Jon F. Ihlefeld; Amit Kumar; Venkatraman Gopalan; D. G. Schlom; Y. B. Chen; X. Q. Pan; J. Schubert; X. Ke; P. Schiffer; J. Orenstein; Lane W. Martin; Ying-Hao Chu; R. Ramesh

BiFeO3 thin films have been deposited on (111) SrTiO3 single crystal substrates by reactive molecular-beam epitaxy in an adsorption-controlled growth regime. This is achieved by supplying a bismuth overpressure and utilizing the differential vapor pressures between bismuth oxides and BiFeO3 to control stoichiometry. Four-circle x-ray diffraction reveals phase-pure, untwinned, epitaxial, (0001)-oriented films with rocking curve full width at half maximum values as narrow as 25arcsec (0.007°). Second harmonic generation polar plots combined with diffraction establish the crystallographic point group of these untwinned epitaxial films to be 3m at room temperature.


Applied Physics Letters | 2005

Ferroelectric response from lead zirconate titanate thin films prepared directly on low-resistivity copper substrates

Mark D. Losego; Leslie H. Jimison; Jon F. Ihlefeld; Jon-Paul Maria

We demonstrate films of the well-known ferroelectric lead zirconate titanate (PZT) prepared directly on copper foils by chemical solution deposition (CSD). The films exhibit saturating polarization hysteresis, remanent polarization values of 26μC∕cm2, and permittivities of 800; these properties are comparable to those achieved using semiconductor-grade substrates. The preparation methodology is founded upon an understanding of solution chemistry as opposed to conventional gas-phase ∕ condensed-phase equilibrium approaches. By adopting this technique, base-metal compatibility can be achieved using much lower temperatures, and a broader set of devices can be prepared offering intimate contact with high conductivity, easily patternable, or ferromagnetic metals.


Advanced Materials | 2011

Fast lithium-ion conducting thin-film electrolytes integrated directly on flexible substrates for high-power solid-state batteries.

Jon F. Ihlefeld; Paul G. Clem; B.L. Doyle; Paul Gabriel Kotula; Kyle R. Fenton; Christopher A. Apblett

By utilizing an equilibrium processing strategy that enables co-firing of oxides and base metals, a means to integrate the lithium-stable fast lithium-ion conductor lanthanum lithium tantalate directly with a thin copper foil current collector appropriate for a solid-state battery is presented. This resulting thin-film electrolyte possesses a room temperature lithium-ion conductivity of 1.5 × 10(-5) S cm(-1) , which has the potential to increase the power of a solid-state battery over current state of the art.


Applied Physics Letters | 2006

MgO epitaxy on GaN (0002) surfaces by molecular beam epitaxy

H. S. Craft; Jon F. Ihlefeld; Mark D. Losego; Ramon Collazo; Zlatko Sitar; J.-P. Maria

We report on the epitaxial deposition of magnesium oxide films with [111] crystallographic orientation on (0002) GaN by molecular beam epitaxy. Specifically, we use an adsorption controlled growth mechanism to initiate the growth process. Electron diffraction shows a spotty intense pattern without intensity fluctuations during growth and evidence of in-plane twinning. X-ray diffraction reveals the films to be epitaxial with full width at half maximum values of 0.3°, 0.5°, and 1° in 2θ, ϕ, and χ circles, respectively. Wet etching of the GaN surface with a HCl:HF mixture prior to growth is critical for achieving high crystalline quality. Epitaxial growth is observed between room temperature and 650°C, with negligible changes in crystalline quality with increased temperature. Atomic force microscopy analysis shows grainy surfaces with feature sizes near 10nm and rms roughness values of 1.4A over 1μm2 areas. X-ray diffraction analysis suggests MgO film stability up to 850°C in ex situ air annealing.


Applied Physics Letters | 2011

Solution deposition planarization of long-length flexible substrates

Chris J. Sheehan; Yehyun Jung; Terry G. Holesinger; D. Matthew Feldmann; Cynthia Edney; Jon F. Ihlefeld; Paul G. Clem; Vladimir Matias

Solution deposition planarization (SDP) is studied for preparing smooth flexible substrates in multimeter lengths. We demonstrate 0.5 nm rms surface roughness starting from unpolished metal tapes and a correlation of substrate roughness with the texture of subsequent ion-beam aligned films. Surface roughness reduction in SDP is modeled via film shrinkage during solution deposition and a residual roughness based on film thickness. Use of solution deposited a-Y2O3 to planarize substrates prior to ion-beam textured MgO growth shows an in-plane texture of MgO down to 4°. Utilizing these templates, we demonstrated superconducting YBa2Cu3Oy coated conductors with critical current densities of 2.8–4.0 MA/cm2 at 75 K.


Journal of Applied Physics | 2008

Extrinsic scaling effects on the dielectric response of ferroelectric thin films

Jon F. Ihlefeld; Aaron M. Vodnick; Shefford P. Baker; William J. Borland; Jon-Paul Maria

Scaling effects in polycrystalline ferroelectric thin films were investigated by preparing barium titanate in a manner that maintained constant composition and film thickness while allowing systematically increased grain size and crystalline coherence. The average grain dimensions ranged from 60to110nm, and temperature dependence of permittivity analysis revealed diffuse phase transitions in all cases. Maximum permittivity values ranged from 380 to 2040 for the smallest to largest sizes, respectively. Dielectric hysteresis is evident at room temperature for all materials, indicating stability of the ferroelectric phase. Comparison of permittivity values at high electric fields indicates that the intrinsic dielectric response is identical and microstructural artifacts likely have a minimal influence on film properties across the sample series. Permittivity values, however, are substantially smaller than those reported for bulk material with similar grain dimensions. X-ray line broadening measurements were ...

Collaboration


Dive into the Jon F. Ihlefeld's collaboration.

Top Co-Authors

Avatar

Jon-Paul Maria

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul G. Clem

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Jacob L. Jones

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Joel R. Wendt

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Michael B. Sinclair

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge