Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jon J. Ramsey is active.

Publication


Featured researches published by Jon J. Ramsey.


Experimental Gerontology | 2000

Dietary restriction and aging in rhesus monkeys: the University of Wisconsin study.

Jon J. Ramsey; Neil Binkley; J.D Christensen; T.A Gresl; Joseph W. Kemnitz; Richard Weindruch

Dietary restriction (DR) retards aging and extends the maximum lifespan of laboratory mice and rats. To determine whether DR has similar actions in a primate species, we initiated a study in 1989 to investigate the effects of a 30% DR in 30 adult male rhesus monkeys. In 1994, an additional 30 females and 16 males were added to the study. Although the animals are still middle-aged, a few differences have developed between the control and DR animals suggesting that DR may induce physiologic changes in the rhesus monkey similar to those observed in rodents. Fasting basal insulin and glucose concentrations are lower in DR compared to control animals while insulin sensitivity is higher in the restricted animals. DR has also altered circulating LDL in a manner that may inhibit atherogenesis. These results suggest that DR may be slowing some age-related physiologic changes. In addition to measures of glucose and lipid metabolism, the animals are evaluated annually for body composition, energy expenditure, physical activity, hematologic indices, and blood or urinary hormone concentrations. In the next few years, the first animals will reach the average lifespan ( approximately 26 years) of captive rhesus monkeys and it will become possible to determine if DR retards the aging process and extends the lifespan in a primate species.


American Journal of Physiology-endocrinology and Metabolism | 1998

Age-related increase in mitochondrial proton leak and decrease in ATP turnover reactions in mouse hepatocytes

Mary-Ellen Harper; Shadi Monemdjou; Jon J. Ramsey; Richard Weindruch

Age-related changes in mitochondria, including decreased respiratory control ratios and altered mitochondrial inner membrane lipid composition, led us to study oxidative phosphorylation in hepatocytes from old (30 mo) and young (3 mo) male C57BL/J mice. Top-down metabolic control analysis and its extension, elasticity analysis, were used to identify changes in the control and regulation of the three blocks of reactions constituting the oxidative phosphorylation system: substrate oxidation, mitochondrial proton leak, and the ATP turnover reactions. Resting oxygen consumption of cells from old mice was 15% lower ( P < 0.05) than in young cells. This is explained entirely by a decrease in oxygen consumption supporting ATP turnover reactions. At all values of mitochondrial membrane potential assessed, the proportion of total oxygen consumption used to balance the leak was greater in the old cells than in the young cells. Metabolic control coefficients indicate a shift in control over respiration and phosphorylation away from substrate oxidation toward increased control by leak and by ATP turnover reactions. Control of the actual number of ATP molecules synthesized by mitochondria for each oxygen atom consumed by the ATP turnover and leak reactions was greater in old than in young cells, showing that efficiency in older cells is more sensitive to changes in these two blocks of reactions than in young cells.Age-related changes in mitochondria, including decreased respiratory control ratios and altered mitochondrial inner membrane lipid composition, led us to study oxidative phosphorylation in hepatocytes from old (30 mo) and young (3 mo) male C57BL/J mice. Top-down metabolic control analysis and its extension, elasticity analysis, were used to identify changes in the control and regulation of the three blocks of reactions constituting the oxidative phosphorylation system: substrate oxidation, mitochondrial proton leak, and the ATP turnover reactions. Resting oxygen consumption of cells from old mice was 15% lower (P < 0.05) than in young cells. This is explained entirely by a decrease in oxygen consumption supporting ATP turnover reactions. At all values of mitochondrial membrane potential assessed, the proportion of total oxygen consumption used to balance the leak was greater in the old cells than in the young cells. Metabolic control coefficients indicate a shift in control over respiration and phosphorylation away from substrate oxidation toward increased control by leak and by ATP turnover reactions. Control of the actual number of ATP molecules synthesized by mitochondria for each oxygen atom consumed by the ATP turnover and leak reactions was greater in old than in young cells, showing that efficiency in older cells is more sensitive to changes in these two blocks of reactions than in young cells.


Aging Clinical and Experimental Research | 1998

The effect of dietary restriction on body composition in adult male and female rhesus macaques

Ellen B. Roecker; Jon J. Ramsey; Joseph W. Kemnitz

Dietary restriction is the only intervention shown to increase maximal life span, and to retard the rate of aging in rodents. As part of a long-term randomized trial of the effects of a 20–30% dietary restriction (DR) on adult rhesus macaques, female (N=30) and male (N=16) monkeys were assessed at baseline and 6, 12 and 18 months, following randomization to control (C) or dietary restricted (R) groups, for body composition by dual-energy x-ray absorptiometry. At baseline, there were no significant differences between C and R groups in any body composition parameters measured. Males had significantly (p>0.05) greater values at baseline than females for body weight (BW), body mass index (BMI), total body lean tissue mass (LTM), appendicular skeletal muscle mass (ASM), and total body bone mineral content (BMC). When analyzed longitudinally through 18 months of DR, C females had significantly increased BW, total body fat tissue mass (FTM), total body percent fat tissue mass (%FTM), LTM, ASM, BMC and abdominal fat tissue mass (AbFTM) relative to R animals. Male C animals had significantly increased BW, FTM, %FTM, BMC and AbFTM relative to R males. The primary effect of DR on body composition in these animals was on FTM.


Journal of Medical Primatology | 2000

Age and gender differences in body composition, energy expenditure, and glucoregulation of adult rhesus monkeys.

Jon J. Ramsey; Jennifer L. Laatsch; Joseph W. Kemnitz

The purpose of this study was to examine the relationship of age to body composition, glucoregulation, activity, and energy expenditure in male and female rhesus monkeys. The animals were studied in three groups, young adults (YA, 7–9 years), middle‐aged adults (MA, 13–17 years), and older adults (OA,>23 years) adults. OA had a lower ( P<0.05) lean body mass than the YA and MA. OA also had the lowest values (P<0.06) for energy expenditure (kJ/minute). Age‐related differences (P<0.05) were observed in time spent resting and moving. The OA spent the most time resting and the least time in vertical movement. There was a trend towards an age‐related decrease in acute insulin response to glucose, while other glucoregulatory parameters were not changed with age. These results are similar to findings in humans, providing further evidence that the rhesus monkey is an appropriate model of human aging.


Age | 2013

Dietary fat modifies mitochondrial and plasma membrane apoptotic signaling in skeletal muscle of calorie-restricted mice

José A. López-Domínguez; Husam Khraiwesh; José A. González-Reyes; Guillermo López-Lluch; Plácido Navas; Jon J. Ramsey; Rafael de Cabo; María I. Burón; José M. Villalba

Calorie restriction decreases skeletal muscle apoptosis, and this phenomenon has been mechanistically linked to its protective action against sarcopenia of aging. Alterations in lipid composition of membranes have been related with the beneficial effects of calorie restriction. However, no study has been designed to date to elucidate if different dietary fat sources with calorie restriction modify apoptotic signaling in skeletal muscle. We show that a 6-month calorie restriction decreased the activity of the plasma membrane neutral sphingomyelinase, although caspase-8/10 activity was not altered, in young adult mice. Lipid hydroperoxides, Bax levels, and cytochrome c and AIF release/accumulation into the cytosol were also decreased, although caspase-9 activity was unchanged. No alterations in caspase-3 and apoptotic index (DNA fragmentation) were observed, but calorie restriction improved structural features of gastrocnemius fibers by increasing cross-sectional area and decreasing circularity of fibers in cross sections. Changing dietary fat with calorie restriction produced substantial alterations of apoptotic signaling. Fish oil augmented the protective effect of calorie restriction decreasing plasma membrane neutral sphingomyelinase, Bax levels, caspase-8/10, and −9 activities, while increasing levels of the antioxidant coenzyme Q at the plasma membrane, and potentiating the increase of cross-sectional area and the decrease of fiber circularity in cross sections. Many of these changes were not found when we used lard. Our data support that dietary fish oil with calorie restriction produces a cellular anti-apoptotic environment in skeletal muscle with a downregulation of components involved in the initial stages of apoptosis engagement, both at the plasma membrane and the mitochondria.


Biogerontology | 2009

Caloric restriction counteracts age-related changes in the activities of sorbitol metabolizing enzymes from mouse liver.

Kevork Hagopian; Jon J. Ramsey; Richard Weindruch

The influence of caloric restriction (CR) on hepatic sorbitol-metabolizing enzyme activities was investigated in young and old mice. Aldose reductase and sorbitol dehydrogenase activities were significantly lower in old CR mice than in old controls. Young CR mice showed decreased aldose reductase activity and a trend towards decreased sorbitol dehydrogenase when compared to controls. Metabolites of the pathway, namely sorbitol, glucose and fructose were decreased by CR in young and old mice. Pyruvate levels were decreased by CR in both young and old mice, while lactate decreased only in old CR. Malate levels increased in old CR but remained unchanged in young CR, when compared with controls. Accordingly, the lactate/pyruvate and malate/pyruvate ratios in young and old CR mice were increased, indicating increased NADH/NAD and NADPH/NADP redox couples, respectively. The results indicate that decreased glucose levels under CR conditions lead to decreased sorbitol pathway enzyme activities and metabolite levels, and could contribute to the beneficial effects of long-term CR through decreased sorbitol levels and NADPH sparing.


British Journal of Nutrition | 2017

Effects of obesity, energy restriction and neutering on the faecal microbiota of cats

Manuela M. Fischer; Alexandre de Mello Kessler; Dorothy A. Kieffer; Trina A. Knotts; Kyoungmi Kim; Alfreda Wei; Jon J. Ramsey; Andrea J. Fascetti

Surveys report that 25-57 % of cats are overweight or obese. The most evinced cause is neutering. Weight loss often fails; thus, new strategies are needed. Obesity has been associated with altered gut bacterial populations and increases in microbial dietary energy extraction, body weight and adiposity. This study aimed to determine whether alterations in intestinal bacteria were associated with obesity, energy restriction and neutering by characterising faecal microbiota using 16S rRNA gene sequencing in eight lean intact, eight lean neutered and eight obese neutered cats before and after 6 weeks of energy restriction. Lean neutered cats had a bacterial profile similar to obese rodents and humans, with a greater abundance (P<0·05) of Firmicutes and lower abundance (P<0·05) of Bacteroidetes compared with the other groups. The greater abundance of Firmicutes in lean neutered cats was due to a bloom in Peptostreptococcaceae. Obese cats had an 18 % reduction in fat mass after energy restriction (P<0·05). Energy reduction was concurrent with significant shifts in two low-abundance bacterial genera and trends in four additional genera. The greatest change was a reduction in the Firmicutes genus, Sarcina, from 4·54 to 0·65 % abundance after energy restriction. The short duration of energy restriction may explain why few bacterial changes were observed in the obese cats. Additional work is needed to understand how neutering, obesity and weight loss are related to changes in feline microbiota and how these microbial shifts affect host physiology.


Microorganisms | 2018

Conservation Implications of Shifting Gut Microbiomes in Captive-Reared Endangered Voles Intended for Reintroduction into the Wild

Nora Allan; Trina A. Knotts; Risa Pesapane; Jon J. Ramsey; Stephanie Castle; Deana L. Clifford; Janet E. Foley

The Amargosa vole is a highly endangered rodent endemic to a small stretch of the Amargosa River basin in Inyo County, California. It specializes on a single, nutritionally marginal food source in nature. As part of a conservation effort to preserve the species, a captive breeding population was established to serve as an insurance colony and a source of individuals to release into the wild as restored habitat becomes available. The colony has successfully been maintained on commercial diets for multiple generations, but there are concerns that colony animals could lose gut microbes necessary to digest a wild diet. We analyzed feces from colony-reared and recently captured wild-born voles on various diets, and foregut contents from colony and wild voles. Unexpectedly, fecal microbial composition did not greatly differ despite drastically different diets and differences observed were mostly in low-abundance microbes. In contrast, colony vole foregut microbiomes were dominated by Allobaculum sp. while wild foreguts were dominated by Lactobacillus sp. If these bacterial community differences result in beneficial functional differences in digestion, then captive-reared Amargosa voles should be prepared prior to release into the wild to minimize or eliminate those differences to maximize their chance of success.


Archive | 2010

Adaptación fisiológica y estructural del músculo esquelético en ratones sometidos a restricción calórica. Papel del grado de insaturación de los lípidos de la dieta

José A. López-Domínguez; Husam Khraiwesh; José A. González-Reyes; Guillermo López-Lluch; Plácido Navas; Jon J. Ramsey; José M. Villalba

This work was supported by Community of Madrid (Grupo Estrategico 2000-2003), NIH, grant R01CA77575, and SAF 2001-2245.The transition step from the p3-dAMP initiation complex to the first elongated products, p3-(dAMP)2 and p3-(dAMP)3, requires a dATP concentration higher than that needed for the initiation reaction or for the further elongation of the p3-(dAMP)3 complex. The elongation in phi 29 DNA-protein p3 replication in vitro was strongly inhibited by salt. Under inhibitory salt concentration, the viral protein p6 greatly stimulated phi 29 DNA-protein p3 replication. The effect of protein p6 was not on the rate of elongation but on the amount of elongated product, stimulating the transition from initiation to formation of the first elongation products.Trabajo presentado en 44th Annual Meeting Society for Neuroscience, celebrado en Washington, DC (USA) del 15 al 19 de noviembre de 2014Recent studies have demonstrated that cytochrome c plays an important role in cell death. In the present study, we report that teniposide and various other chemotherapeutic agents induced a dose-dependent increase in the expression of the mitochondrial respiratory chain proteins cytochrome c, subunits I and IV of cytochrome c oxidase, and the free radical scavenging enzyme manganous superoxide dismutase. The teniposide-induced increase of cytochrome c was inhibited by cycloheximide, indicating new protein synthesis. Elevated cytochrome c levels were associated with enhanced cytochrome c oxidase-dependent oxygen uptake using TMPD/ascorbate as the electron donor, suggesting that the newly synthesized proteins were functional. Cytochrome c was released into the cytoplasm only after maximal levels had been reached in the mitochondria, but there was no concomitant decrease in mitochondrial membrane potential or caspase activation. Our results suggest that the increase in mitochondrial protein expression may play a role in the early cellular defense against anticancer drugs.Supported by Grant GM-08041 from the National Institutes of Health, United States Public Health Service.The results presented in this paper indicate that the phi 29 DNA polymerase is the only enzyme required for efficient synthesis of full length phi 29 DNA with the phi 29 terminal protein, the initiation primer, as the only additional protein requirement. Analysis of phi 29 DNA polymerase activity in various in vitro DNA replication systems indicates that two main reasons are responsible for the efficiency of this minimal system: 1) the phi 29 DNA polymerase is highly processive in the absence of any accessory protein; 2) the polymerase itself is able to produce strand displacement coupled to the polymerization process. Using primed M13 DNA as template, the phi 29 DNA polymerase is able to synthesize DNA chains greater than 70 kilobase pairs. Furthermore, conditions that increase the stability of secondary structure in the template do not affect the processivity and strand displacement ability of the enzyme. Thus, the catalytic properties of the phi 29 DNA polymerase are appropriate for a phi 29 DNA replication mechanism involving two replication origins, strand displacement and continuous synthesis of both strands. The enzymology of phi 29 DNA replication would support a symmetrical model of DNA replication.Aided by grants from the National Institutes of Health U.S. Public Health Service, and E. I. Du Pont de Neumours and Company, Inc.This work was supported in part by NRSA, National Institutes of Health Grants NS09463 and NS32501 and from National Science Foundation Grant 9310965.We have recently developed a new method to detect and characterize single base substitutions in transcribed genes which is based on the ability of RNAse A to recognize and cleave single base mismatches in RNA:RNA heteroduplexes. The RNAse A misrnatch cleavage assay was applied to screen human colon carcinoma cell lines and primary tumors for the presence of mutant e-X-ras oncogenes. We have determined that the mutant e-X-ras allele is overexpressed and amplified relative to the normal in the SX-CO-l human colon carcinoma cell lineo The oncogene mutation has been characterized by this method as a glycine to valine substitution at codon 12 of the e-X-ras gene. This result was confirmed by cloning and sequencing. We have previously reported that about 40% of primary human colon tumors contain e-X-ras genes mutant at codon 12 (Forrester et al, Nature 327: 298, 1987). We report here the characterization by molecular cloning and sequencing of the mutation in the e-X-ras oneogene from two of these tumors (tumors 3 and 28). We also describe the histopathologieal eharaeterization of these two tumors and demonstrate, by Southern blot hybridization of NIH3T3 transformants, the simultaneous presenee of mutant e-X-ras and N-ras oncogenes in villous adenoma 28. Our results provide evidence for the frequent assoeiation of ras somatie mutational aetivation in the early stages of tumor development in this common type of human eaneer.Aided by Grants AM-01845, AM-08953, and l-Sol-FR-05099 from the National Institutes o f Health, United States Public Health Service, and E. I. Du Pont de Nemours and Company, Inc. A preliminary report o f this work was presented at the Second Meeting o f the Federation o f European Biochemical Societies (symposium on “Ribonucleic Acid-Structure and Function”), Vienna, April 21 to 24, 1965.1 pagina.-- Trabajo presentado al: 4th International Meeting on Apicomplexa in Farm Animals. (Madrid, Spain. 11-14 October ,2017).Supported by Grant GM-08041 from the National Institutes of Health, United States Public Health Service.Resumen del trabajo presentado al XXXIII Congreso de la Sociedad Espanola de Bioquimica y Biologia Molecular celebrado en Cordoba del 14 al 17 de septiembre de 2010.This article describes the expression pattern and functional analysis of Lazarillo, a novel cell surface glycoprotein expressed in the embryonic grasshopper nervous system, and a member of the lipocalin family. Lazarillo is expressed by a subset of neuroblasts, ganglion mother cells and neurons of the central nervous system, by all sensory neurons of the peripheral nervous system, and by a subset of neurons of the enteric nervous system. It is also present in a few non neuronal cells associated mainly with the excretory system. A monoclonal antibody raised against Lazarillo perturbs the extent and direction of growth of identified commissural pioneer neurons. We propose that Lazarillo is the receptor for a midline morphogen involved in the outgrowth and guidance of these neurons.Poster presentado al Annual Biomedical Research Conference for Minority Students celebrado en California (US) del 7 al 10 de noviembre de 2012.The phage phi 29 regulatory protein p4 activates the late promoter A3 by stabilizing the binding of Bacillus subtilis RNA polymerase (RNAP) as a closed complex. Interaction between the two proteins occurs through amino acid Arg120 in protein p4 and the C-terminal domain of the RNAP alpha subunit (alpha-CTD). In addition to its role as activator of the late transcription, protein p4 represses early transcription from the A2b and A2c promoters, that are divergently transcribed. Binding of p4 to its recognition site at the A3 promoter displaces the RNAP from promoter A2b, both by steric hindrance and by the curvature induced upon p4 binding. At the A2c promoter, the RNAP cooperates with p4 binding in such a way that promoter clearance is prevented. Interestingly, amino acid Arg120 in p4 and the alpha-CTD in B. subtilis RNAP are involved in the interactions that lead to transcription repression at promoter A2c. To investigate how this interaction leads to activation at PA3 and to repression at PA2c, mutant promoters were constructed. In the absence of a -35 consensus box for sigma A-RNAP activation was observed, while in its presence repression occurred. The results support the idea that overstabilization of RNAP at the promoter over a threshold level leads to repression.Resumen del poster presentado al XXXIII Congreso de la Sociedad Espanola de Bioquimica y Biologia Molecular celebrado en Cordoba del 14 al 17 de septiembre de 2010.Formalin-fixed paraffin-embedded tissue specimens obtained by fine needle aspiration of pancreatic masses from 47 patients were examined retrospectively for cytology and the presence of mutant c-K-ras oncogenes. Point mutations of c-K-ras in codon 12 were detected by RNA-DNA RNAse A mismatch cleavage after in vitro DNA amplification of the cellular c-K-ras sequences by the polymerase chain reaction. Of the 36 patients with pancreatic adenocarcinoma, mutant c-K-ras oncogenes were detected in 18 of 25 (72%) with malignant cytologies, 2 of 8 (25%) with atypical cytologies, and 0 of 3 with benign aspiration cytologies. The remaining 11 patients without pancreatic adenocarcinomas did not have mutant c-K-ras genes detectable by the assay. The diagnosis of pancreatic adenocarcinoma was based upon clinical follow-up. The presence of mutant c-K-ras oncogenes did not significantly affect survival in the patients studied. Mutant c-K-ras genes were found at the time of initial clinical presentation in the majority of pancreatic adenocarcinomas, suggesting an important role of the mutation in oncogenesis. In conjunction with cytology, our approach represents an application for cancer diagnosis at the molecular genetic level.Calorie restriction (CR) has been shown to decrease reactive oxygen species (ROS) production and retard aging in a variety of species. It has been proposed that alterations in membrane saturation are central to these actions of CR. As a step towards testing this theory, mice were assigned to 4 dietary groups (control and 3 CR groups) and fed AIN-93G diets at 95 % (control) or 60 % (CR) of ad libitum for 8 months. To manipulate membrane composition, the primary dietary fats for the CR groups were soybean oil (also used in the control diet), fish oil or lard. Skeletal muscle mitochondrial lipid composition, proton leak, and H(2)O(2) production were measured. Phospholipid fatty acid composition in CR mice was altered in a manner that reflected the n-3 and n-6 fatty acid profiles of their respective dietary lipid sources. Dietary lipid composition did not alter proton leak kinetics between the CR groups. However, the capacity of mitochondrial complex III to produce ROS was decreased in the CR lard compared to the other CR groups. The results of this study indicate that dietary lipid composition can influence ROS production in muscle mitochondria of CR mice. It remains to be determined if lard or other dietary oils can maximize the CR-induced decreases in ROS production.To investigate the relationship between RNA folding and ribozyme catalysis, we have carried out a detailed kinetic analysis of four structural derivatives of the hairpin ribozyme. Optimal and suboptimal (wild-type) substrate sequences were studied in conjunction with stabilization of helix 4, which supports formation of the catalytic core. Pre-steady-state and steady-state kinetic studies strongly support a model in which each of the ribozyme variants partitions between two major conformations leading to active and inactive ribozymez substrate complexes. Reaction rates for cleavage, ligation, and substrate binding to both ribozyme conformations were determined. Ligation rates (3 min 21 ) were typically 15-fold greater than cleavage rates (0.2 min 21 ), demonstrating that the hairpin ribozyme is an efficient RNA ligase. On the other hand, substrate binding is very rapid (k on 5 4 3 10 8 M 21 min 21 ), and the ribozymez substrate complex is very stable (K D < 25 pM ;k off < 0.01 min 21 ). Stabilization of helix 4 increases the proportion of RNA molecules folded into the active conformation, and enhances substrate association and ligation rates. These effects can be explained by stabilization of the catalytic core of the ribozyme. Rigorous consideration of conformational isomers and their intrinsic kinetic properties was necessary for development of a kinetic scheme for the ribozyme-catalyzed reaction.The human integrin VLA (very late activation antigens)-4 (CD49d/CD29), the leukocyte receptor for both the CS-1 region of plasma fibronectin (Fn) and the vascular cell surface adhesion molecule-1 (VCAM-1), also mediates homotypic aggregation upon triggering with specific anti-VLA-4 monoclonal antibody (mAb). Epitope mapping of this integrin on the human B-cell line Ramos, performed with a wide panel of anti-VLA-4 mAb by both cross-competitive cell binding and protease sensitivity assays, revealed the existence of three topographically distinct epitopes on the alpha 4 chain, referred to as epitopes A-C. By testing this panel of anti-VLA-4 mAb for inhibition of cell binding to both a 38-kDa Fn fragment containing CS-1 and to VCAM-1, as well as for induction and inhibition of VLA-4 mediated homotypic cell adhesion, we have found overlapping but different functional properties associated with each epitope. Anti-alpha 4 mAb recognizing epitope B inhibited cell attachment to both Fn and VCAM-1, whereas mAb against epitope A did not block VCAM-1 binding and only partially inhibited binding to Fn. In contrast, mAb directed to epitope C did not affect cell adhesion to either of the two VLA-4 ligands. All mAb directed to site A, as well as a subgroup of mAb recognizing epitope B (called B2), were able to induce cell aggregation, but this effect was not exerted by mAb specific to site C and by a subgroup against epitope B (called B1). Moreover, although anti-epitope C and anti-epitope B1 mAb did not trigger aggregation, those mAb blocked aggregation induced by anti-epitope A or B2 mAb. In addition, anti-epitope A mAb blocked B2-induced aggregation, and conversely, anti-epitope B2 mAb blocked A-induced aggregation. Further evidence for multiple VLA-4 functions is that anti-Fn and anti-VCAM-1 antibodies inhibited binding to Fn or to VCAM-1, respectively, but did not affect VLA-4-mediated aggregation. In summary, we have demonstrated that there are at least three different VLA-4-mediated adhesion functions, we have defined three distinct VLA-4 epitopes, and we have correlated these epitopes with the different functions of VLA-4.Lazarillo, a protein recognized by the monoclonal antibody 10E6, is expressed by a subset of neurons in the developing nervous system of the grasshopper. It is a glycoprotein of 45x10(3) M(r) with internal disulfide bonds and linked to the extracellular side of the plasma membrane by a glycosylphosphatidylinositol moiety. Peptide sequences obtained from affinity purified adult protein were used to identify an embryonic cDNA clone, and in situ hybridizations confirmed that the distribution of the Lazarillo mRNA paralleled that of the monoclonal antibody labeling on embryos. Sequence analysis defines Lazarillo as a member of the lipocalin family, extracellular carriers of small hydrophobic ligands, and most related to the porphyrin- and retinol-binding lipocalins. Lazarillo is the first example of a lipocalin anchored to the plasma membrane, highly glycosylated, and restricted to a subset of developing neurons.Trabajo presentado al Annual Biomedical Research Conference for Minority Students celebrada en Nashville (US) del 13 al 16 de noviembre de 2013.A cDNA has been isolated from human hippocampus that appears to encode a novel Na(+)-dependent, Cl(-)-independent, neutral amino acid transporter. The putative protein, designated SATT, is 529 amino acids long and exhibits significant amino acid sequence identity (39-44%) with mammalian L-glutamate transporters. Expression of SATT cDNA in HeLa cells induced stereospecific uptake of L-serine, L-alanine, and L-threonine that was not inhibited by excess (3 mM) 2-(methylamino)-isobutyric acid, a specific substrate for the System A amino acid transporter. SATT expression in HeLa cells did not induce the transport of radiolabeled L-cysteine, L-glutamate, or related dicarboxylates. Northern blot hybridization revealed high levels of SATT mRNA in human skeletal muscle, pancreas, and brain, intermediate levels in heart, and low levels in liver, placenta, lung, and kidney. SATT transport characteristics are similar to the Na(+)-dependent neutral amino acid transport activity designated System ASC, but important differences are noted. These include: 1) SATTs apparent low expression in ASC-containing tissues such as liver or placenta; 2) the lack of mutual inhibition between serine and cysteine; and 3) the lack of trans-stimulation. SATT may represent one of multiple activities that exhibit System ASC-like transport characteristics in diverse tissues and cell lines.


Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2001

Caloric Restriction Mimetics Metabolic Interventions

Richard Weindruch; Kevin P. Keenan; John M Carney; Gabriel Fernandes; Ritchie J. Feuers; Robert Floyd; Jeffrey B. Halter; Jon J. Ramsey; Arlan Richardson; George S. Roth; Stephen R. Spindler

Collaboration


Dive into the Jon J. Ramsey's collaboration.

Top Co-Authors

Avatar

Joseph W. Kemnitz

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Richard Weindruch

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Guillermo López-Lluch

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Plácido Navas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ellen B. Roecker

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Rafael de Cabo

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Andrew G. Swick

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Arlan Richardson

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge