Jon Jerlström-Hultqvist
Uppsala University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jon Jerlström-Hultqvist.
Nature Reviews Microbiology | 2010
Johan Ankarklev; Jon Jerlström-Hultqvist; Emma Ringqvist; Karin Troell; Staffan G. Svärd
The eukaryotic intestinal parasite Giardia intestinalis was first described in 1681, when Antonie van Leeuwenhoek undertook a microscopic examination of his own diarrhoeal stool. Nowadays, although G. intestinalis is recognized as a major worldwide contributor to diarrhoeal disease in humans and other mammals, the disease mechanisms are still poorly understood. Owing to its reduced complexity and proposed early evolutionary divergence, G. intestinalis is used as a model eukaryotic system for studying many basic cellular processes. In this Review we discuss recent discoveries in the molecular cell biology and pathogenesis of G. intestinalis.
PLOS Pathogens | 2009
Oscar Franzén; Jon Jerlström-Hultqvist; Elsie Castro; Ellen Sherwood; Johan Ankarklev; David S. Reiner; Daniel Palm; Jan Andersson; Björn Andersson; Staffan G. Svärd
Giardia intestinalis is a major cause of diarrheal disease worldwide and two major Giardia genotypes, assemblages A and B, infect humans. The genome of assemblage A parasite WB was recently sequenced, and the structurally compact 11.7 Mbp genome contains simplified basic cellular machineries and metabolism. We here performed 454 sequencing to 16× coverage of the assemblage B isolate GS, the only Giardia isolate successfully used to experimentally infect animals and humans. The two genomes show 77% nucleotide and 78% amino-acid identity in protein coding regions. Comparative analysis identified 28 unique GS and 3 unique WB protein coding genes, and the variable surface protein (VSP) repertoires of the two isolates are completely different. The promoters of several enzymes involved in the synthesis of the cyst-wall lack binding sites for encystation-specific transcription factors in GS. Several synteny-breaks were detected and verified. The tetraploid GS genome shows higher levels of overall allelic sequence polymorphism (0.5 versus <0.01% in WB). The genomic differences between WB and GS may explain some of the observed biological and clinical differences between the two isolates, and it suggests that assemblage A and B Giardia can be two different species.
BMC Genomics | 2010
Jon Jerlström-Hultqvist; Oscar Franzén; Johan Ankarklev; Feifei Xu; Eva Nohýnková; Jan Andersson; Staffan G. Svärd; Björn Andersson
BackgroundGiardia intestinalis is a protozoan parasite that causes diarrhea in a wide range of mammalian species. To further understand the genetic diversity between the Giardia intestinalis species, we have performed genome sequencing and analysis of a wild-type Giardia intestinalis sample from the assemblage E group, isolated from a pig.ResultsWe identified 5012 protein coding genes, the majority of which are conserved compared to the previously sequenced genomes of the WB and GS strains in terms of microsynteny and sequence identity. Despite this, there is an unexpectedly large number of chromosomal rearrangements and several smaller structural changes that are present in all chromosomes. Novel members of the VSP, NEK Kinase and HCMP gene families were identified, which may reveal possible mechanisms for host specificity and new avenues for antigenic variation. We used comparative genomics of the three diverse Giardia intestinalis isolates P15, GS and WB to define a core proteome for this species complex and to identify lineage-specific genes. Extensive analyses of polymorphisms in the core proteome of Giardia revealed differential rates of divergence among cellular processes.ConclusionsOur results indicate that despite a well conserved core of genes there is significant genome variation between Giardia isolates, both in terms of gene content, gene polymorphisms, structural chromosomal variations and surface molecule repertoires. This study improves the annotation of the Giardia genomes and enables the identification of functionally important variation.
Cold Spring Harbor Perspectives in Biology | 2015
Dan I. Andersson; Jon Jerlström-Hultqvist; Joakim Näsvall
How the enormous structural and functional diversity of new genes and proteins was generated (estimated to be 10(10)-10(12) different proteins in all organisms on earth [Choi I-G, Kim S-H. 2006. Evolution of protein structural classes and protein sequence families. Proc Natl Acad Sci 103: 14056-14061] is a central biological question that has a long and rich history. Extensive work during the last 80 years have shown that new genes that play important roles in lineage-specific phenotypes and adaptation can originate through a multitude of different mechanisms, including duplication, lateral gene transfer, gene fusion/fission, and de novo origination. In this review, we focus on two main processes as generators of new functions: evolution of new genes by duplication and divergence of pre-existing genes and de novo gene origination in which a whole protein-coding gene evolves from a noncoding sequence.
Gut microbes | 2010
Jon Jerlström-Hultqvist; Johan Ankarklev; Staffan G. Svärd
We have recently sequenced the genome of the human Giardia intestinalis assemblage B isolate GS.1 Comparisons to the earlier sequenced genome of the human assemblage A isolate WB showed that the average amino acid identity in 4300 orthologous proteins was only 78%. Here we discuss these results in the light of new genome sequencing data from the hoofed-animal assemblage E (isolate P15, isolated from a pig) and further characterization of assemblage A and B isolates from humans. There is a highly conserved set of core genes (4557 genes, 91% of genome) common to all isolates. The largest genomic differences are found in variable, Giardia-specific gene families and a large number of chromosomal rearrangements were detected, even between different chromosomes. Surprisingly, the assemblage E and A isolates are more similar at the amino-acid level than the two human isolates are to each other. This strengthens our earlier data suggesting that humans are infected by two different species of Giardia.
PLOS Computational Biology | 2013
Oscar Franzén; Jon Jerlström-Hultqvist; Elin Einarsson; Johan Ankarklev; Marcela Ferella; Björn Andersson; Staffan G. Svärd
Giardia intestinalis is a common cause of diarrheal disease and it consists of eight genetically distinct genotypes or assemblages (A-H). Only assemblages A and B infect humans and are suggested to represent two different Giardia species. Correlations exist between assemblage type and host-specificity and to some extent symptoms. Phenotypical differences have been documented between assemblages and genome sequences are available for A, B and E. We have characterized and compared the polyadenylated transcriptomes of assemblages A, B and E. Four genetically different isolates were studied (WB (AI), AS175 (AII), P15 (E) and GS (B)) using paired-end, strand-specific RNA-seq. Most of the genome was transcribed in trophozoites grown in vitro, but at vastly different levels. RNA-seq confirmed many of the present annotations and refined the current genome annotation. Gene expression divergence was found to recapitulate the known phylogeny, and uncovered lineage-specific differences in expression. Polyadenylation sites were mapped for over 70% of the genes and revealed many examples of conserved and unexpectedly long 3′ UTRs. 28 open reading frames were found in a non-transcribed gene cluster on chromosome 5 of the WB isolate. Analysis of allele-specific expression revealed a correlation between allele-dosage and allele expression in the GS isolate. Previously reported cis-splicing events were confirmed and global mapping of cis-splicing identified only one novel intron. These observations can possibly explain differences in host-preference and symptoms, and it will be the basis for further studies of Giardia pathogenesis and biology.
PLOS Genetics | 2014
Feifei Xu; Jon Jerlström-Hultqvist; Elin Einarsson; Ásgeir Ástvaldsson; Staffan G. Svärd; Jan Andersson
Spironucleus salmonicida causes systemic infections in salmonid fish. It belongs to the group diplomonads, binucleated heterotrophic flagellates adapted to micro-aerobic environments. Recently we identified energy-producing hydrogenosomes in S. salmonicida. Here we present a genome analysis of the fish parasite with a focus on the comparison to the more studied diplomonad Giardia intestinalis. We annotated 8067 protein coding genes in the ∼12.9 Mbp S. salmonicida genome. Unlike G. intestinalis, promoter-like motifs were found upstream of genes which are correlated with gene expression, suggesting a more elaborate transcriptional regulation. S. salmonicida can utilise more carbohydrates as energy sources, has an extended amino acid and sulfur metabolism, and more enzymes involved in scavenging of reactive oxygen species compared to G. intestinalis. Both genomes have large families of cysteine-rich membrane proteins. A cluster analysis indicated large divergence of these families in the two diplomonads. Nevertheless, one of S. salmonicida cysteine-rich proteins was localised to the plasma membrane similar to G. intestinalis variant-surface proteins. We identified S. salmonicida homologs to cyst wall proteins and showed that one of these is functional when expressed in Giardia. This suggests that the fish parasite is transmitted as a cyst between hosts. The extended metabolic repertoire and more extensive gene regulation compared to G. intestinalis suggest that the fish parasite is more adapted to cope with environmental fluctuations. Our genome analyses indicate that S. salmonicida is a well-adapted pathogen that can colonize different sites in the host.
Eukaryotic Cell | 2012
Jon Jerlström-Hultqvist; Britta Stadelmann; Sandra Birkestedt; Ulf Hellman; Staffan G. Svärd
ABSTRACT In recent years, proteomics has come of age with the development of efficient tools for purification, identification, and characterization of gene products predicted by genome projects. The intestinal protozoan Giardia intestinalis can be transfected, but there is only a limited set of vectors available, and most of them are not user friendly. This work delineates the construction of a suite of cassette-based expression vectors for use in Giardia. Expression is provided by the strong constitutive ornithine carbamoyltransferase (OCT) promoter, and tagging is possible in both N- and C-terminal configurations. Taken together, the vectors are capable of providing protein localization and production of recombinant proteins, followed by efficient purification by a novel affinity tag combination, streptavidin binding peptide–glutathione S-transferase (SBP-GST). The option of removing the tags from purified proteins was provided by the inclusion of a PreScission protease site. The efficiency and feasibility of producing and purifying endogenous recombinant Giardia proteins with the developed vectors was demonstrated by the purification of active recombinant arginine deiminase (ADI) and OCT from stably transfected trophozoites. Moreover, we describe the tagging, purification by StrepTactin affinity chromatography, and compositional analysis by mass spectrometry of the G. intestinalis 26S proteasome by employing the Strep II-FLAG–tandem affinity purification (SF-TAP) tag. This is the first report of efficient production and purification of recombinant proteins in and from Giardia, which will allow the study of specific parasite proteins and protein complexes.
Nature Communications | 2013
Jon Jerlström-Hultqvist; Elin Einarsson; Feifei Xu; Karin Hjort; Bo Ek; Daniel Steinhauf; Kjell Hultenby; Jonas Bergquist; Jan Andersson; Staffan G. Svärd
Acquisition of the mitochondrion is a key event in the evolution of the eukaryotic cell, but diversification of the organelle has occurred during eukaryotic evolution. One example of such mitochondria-related organelles (MROs) are hydrogenosomes, which produce ATP by substrate-level phosphorylation with hydrogen as a byproduct. The diplomonad parasite Giardia intestinalis harbours mitosomes, another type of MRO. Here we identify MROs in the salmon parasite Spironucleus salmonicida with similar protein import and Fe–S cluster assembly machineries as in Giardia mitosomes. We find that hydrogen production is prevalent in the diplomonad genus Spironucleus, and that S. salmonicida MROs contain enzymes characteristic of hydrogenosomes. Evolutionary analyses of known hydrogenosomal components indicate their presence in the diplomonad ancestor, and subsequent loss in Giardia. Our results suggest that hydrogenosomes are metabolic adaptations predating the split between parabasalids and diplomonads, which is deeper than the split between animals and fungi in the eukaryotic tree.
BMC Genomics | 2010
Katarina Roxström-Lindquist; Jon Jerlström-Hultqvist; Anders Jørgensen; Karin Troell; Staffan G. Svärd; Jan Andersson
BackgroundMicrobial eukaryotes show large variations in genome structure and content between lineages, indicating extensive flexibility over evolutionary timescales. Here we address the tempo and mode of such changes within diplomonads, flagellated protists with two nuclei found in oxygen-poor environments. Approximately 5,000 expressed sequence tag (EST) sequences were generated from the fish commensal Spironucleus barkhanus and compared to sequences from the morphologically indistinguishable fish parasite Spironucleus salmonicida, and other diplomonads. The ESTs were complemented with sequence variation studies in selected genes and genome size determinations.ResultsMany genes detected in S. barkhanus and S. salmonicida are absent in the human parasite Giardia intestinalis, the most intensively studied diplomonad. For example, these fish diplomonads show an extended metabolic repertoire and are able to incorporate selenocysteine into proteins. The codon usage is altered in S. barkhanus compared to S. salmonicida. Sequence variations were found between individual S. barkhanus ESTs for many, but not all, protein coding genes. Conversely, no allelic variation was found in a previous genome survey of S. salmonicida. This difference was confirmed by sequencing of genomic DNA. Up to five alleles were identified for the cloned S. barkhanus genes, and at least nineteen highly expressed S. barkhanus genes are represented by more than four alleles in the EST dataset. This could be explained by the presence of a non-clonal S. barkhanus population in the culture, by a ploidy above four, or by duplications of parts of the genome. Indeed, genome size estimations using flow cytometry indicated similar haploid genome sizes in S. salmonicida and G. intestinalis (~12 Mb), whereas the S. barkhanus genome is larger (~18 Mb).ConclusionsThis study indicates extensive divergent genome evolution within diplomonads. Genomic traits such as codon usage, frequency of allelic sequence variation, and genome size have changed considerably between S. barkhanus and S. salmonicida. These observations suggest that large genomic differences may accumulate in morphologically indistinguishable eukaryotic microbes.