Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jon M. Fukuto is active.

Publication


Featured researches published by Jon M. Fukuto.


Biochemical and Biophysical Research Communications | 1990

Nitric oxide and cyclic GMP formation upon electrical field stimulation cause relaxation of corpus cavernosum smooth muscle.

Louis J. Ignarro; Peggy A. Bush; Georgette M. Buga; Keith S. Wood; Jon M. Fukuto; Jacob Rajfer

In the presence of functional adrenergic and cholinergic blockade, electrical field stimulation relaxes corpus cavernosum smooth muscle by unknown mechanisms. We report here that electrical field stimulation of isolated strips of rabbit corpus cavernosum promotes the endogenous formation and release of nitric oxide (NO), nitrite, and cyclic GMP. Corporal smooth muscle relaxation in response to electrical field stimulation, in the presence of guanethidine and atropine, was abolished by tetrodotoxin and potassium-induced depolarization, and was markedly inhibited by NG-nitro-L-arginine, NG-amino-L-arginine, oxyhemoglobin, and methylene blue, but was unaffected by indomethacin. The inhibitory effects of NG-substituted analogs of L-arginine were nearly completely reversed by addition of excess L-arginine but not D-arginine. Corporal smooth muscle relaxation elicited by electrical field stimulation was accompanied by rapid and marked increases in tissue levels of nitrite and cyclic GMP, and all responses were nearly abolished by NG-nitro-L-arginine. These observations indicate that penile erection may be mediated by NO generated in response to nonadrenergic-noncholinergic neurotransmission.


Hypertension | 1991

Shear stress-induced release of nitric oxide from endothelial cells grown on beads.

Georgette M. Buga; Michele E. Gold; Jon M. Fukuto; Louis J. Ignarro

An in vitro bioassay system was developed to study endothelium-mediated, shear stressinduced, or flow-dependent generation of endothelium-derived relaxing factor (EDRF). Monolayers of aortic endothelial cells were grown on a rigid and large surface area of microcarrier beads and were packed in a small column perfused with Krebs bicarbonate solution. The perfusate was allowed to superfuse three endothelium-denuded target pulmonary arterial strips arranged in a cascade. Fluid shear stress caused a flow-dependent release of EDRF from the endothelial cells. The action of EDRF was abolished by oxyhemoglobin and methylene blue, and the generation of EDRF in response to shear stress was markedly inhibited or abolished by NG-nitro-L-arginine, by NG-amino-L-arginine, by calcium-free extracellular medium, and by depleting endothelial cells of endogenous L-arginine. Addition of L-arginine to arginine-deficient but not arginine-containing endothelial cells rapidly restored the capacity of shear stress and bradykinin to generate EDRF. These observations indicate that fluid shear stress causes the generation of EDRF with properties of nitric oxide from aortic endothelial cells and that the bioassay system described may be useful for studying the mechanism of mechanochemical coupling that leads to nitric oxide generation.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Positive inotropic and lusitropic effects of HNO/NO− in failing hearts: Independence from β-adrenergic signaling

Nazareno Paolocci; Tatsuo Katori; Hunter C. Champion; Marcus St. John; Katrina M. Miranda; Jon M. Fukuto; David A. Wink; David A. Kass

Nitroxyl anion (HNO/NO−), the one-electron reduced form of nitric oxide (NO), induces positive cardiac inotropy and selective venodilation in the normal in vivo circulation. Here we tested whether HNO/NO− augments systolic and diastolic function of failing hearts, and whether contrary to NO/nitrates such modulation enhances rather than blunts β-adrenergic stimulation and is accompanied by increased plasma calcitonin gene-related peptide (CGRP). HNO/NO− generated by Angelis salt (AS) was infused (10 μg/kg per min, i.v.) to conscious dogs with cardiac failure induced by chronic tachycardia pacing. AS nearly doubled contractility, enhanced relaxation, and lowered cardiac preload and afterload (all P < 0.001) without altering plasma cGMP. This contrasted to modest systolic depression induced by an NO donor diethylamine(DEA)/NO or nitroglycerin (NTG). Cardiotropic changes from AS were similar in failing hearts as in controls despite depressed β-adrenergic and calcium signaling in the former. Inotropic effects of AS were additive to dobutamine, whereas DEA/NO blunted β-stimulation and NTG was neutral. Administration of propranolol to nonfailing hearts fully blocked isoproterenol stimulation but had minimal effect on AS inotropy and enhanced lusitropy. Arterial plasma CGRP rose 3-fold with AS but was unaltered by DEA/NO or NTG, supporting a proposed role of this peptide to HNO/NO− cardiotropic action. Thus, HNO/NO− has positive inotropic and lusitropic action, which unlike NO/nitrates is independent and additive to β-adrenergic stimulation and stimulates CGRP release. This suggests potential of HNO/NO− donors for the treatment of heart failure.


Proceedings of the National Academy of Sciences of the United States of America | 2002

The reduction potential of nitric oxide (NO) and its importance to NO biochemistry

Michael D. Bartberger; Wei Liu; Eleonora Ford; Katrina M. Miranda; Christopher H. Switzer; Jon M. Fukuto; Patrick J. Farmer; David A. Wink; K. N. Houk

A potential of about −0.8 (±0.2) V (at 1 M versus normal hydrogen electrode) for the reduction of nitric oxide (NO) to its one-electron reduced species, nitroxyl anion (3NO−) has been determined by a combination of quantum mechanical calculations, cyclic voltammetry measurements, and chemical reduction experiments. This value is in accord with some, but not the most commonly accepted, previous electrochemical measurements involving NO. Reduction of NO to 1NO− is highly unfavorable, with a predicted reduction potential of about −1.7 (±0.2) V at 1 M versus normal hydrogen electrode. These results represent a substantial revision of the derived and widely cited values of +0.39 V and −0.35 V for the NO/3NO− and NO/1NO− couples, respectively, and provide support for previous measurements obtained by electrochemical and photoelectrochemical means. With such highly negative reduction potentials, NO is inert to reduction compared with physiological events that reduce molecular oxygen to superoxide. From these reduction potentials, the pKa of 3NO− has been reevaluated as 11.6 (±3.4). Thus, nitroxyl exists almost exclusively in its protonated form, HNO, under physiological conditions. The singlet state of nitroxyl anion, 1NO−, is physiologically inaccessible. The significance of these potentials to physiological and pathophysiological processes involving NO and O2 under reductive conditions is discussed.


Proceedings of the National Academy of Sciences of the United States of America | 2003

A biochemical rationale for the discrete behavior of nitroxyl and nitric oxide in the cardiovascular system.

Katrina M. Miranda; Nazareno Paolocci; Tatsuo Katori; Douglas D. Thomas; Eleonora Ford; Michael D. Bartberger; Michael Graham Espey; David A. Kass; Martin Feelisch; Jon M. Fukuto; David A. Wink

The redox siblings nitroxyl (HNO) and nitric oxide (NO) have often been assumed to undergo casual redox reactions in biological systems. However, several recent studies have demonstrated distinct pharmacological effects for donors of these two species. Here, infusion of the HNO donor Angelis salt into normal dogs resulted in elevated plasma levels of calcitonin gene-related peptide, whereas neither the NO donor diethylamine/NONOate nor the nitrovasodilator nitroglycerin had an appreciable effect on basal levels. Conversely, plasma cGMP was increased by infusion of diethylamine/NONOate or nitroglycerin but was unaffected by Angelis salt. These results suggest the existence of two mutually exclusive response pathways that involve stimulated release of discrete signaling agents from HNO and NO. In light of both the observed dichotomy of HNO and NO and the recent determination that, in contrast to the O2/documentclass[10pt]{article} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} pagestyle{empty} setlength{oddsidemargin}{-69pt} begin{document} begin{equation*}{mathrm{O}}_{2}^{-}end{equation*}end{document} couple, HNO is a weak reductant, the relative reactivity of HNO with common biomolecules was determined. This analysis suggests that under biological conditions, the lifetime of HNO with respect to oxidation to NO, dimerization, or reaction with O2 is much longer than previously assumed. Rather, HNO is predicted to principally undergo addition reactions with thiols and ferric proteins. Calcitonin gene-related peptide release is suggested to occur via altered calcium channel function through binding of HNO to a ferric or thiol site. The orthogonality of HNO and NO may be due to differential reactivity toward metals and thiols and in the cardiovascular system, may ultimately be driven by respective alteration of cAMP and cGMP levels.


Biological Chemistry | 2004

The chemistry of nitrosative stress induced by nitric oxide and reactive nitrogen oxide species. Putting perspective on stressful biological situations.

Lisa A. Ridnour; Douglas D. Thomas; Daniele Mancardi; Michael Graham Espey; Katrina M. Miranda; Nazareno Paolocci; Martin Feelisch; Jon M. Fukuto; David A. Wink

Abstract This review addresses many of the chemical aspects of nitrosative stress mediated by N(2)O(3). From a cellular perspective, N(2)O(3) and the resulting reactive nitrogen oxide species target specific motifs such as thiols, lysine active sites, and zinc fingers and is dependant upon both the rates of production as well as consumption of NO and must be taken into account in order to access the nitrosative environment. Since production and consumption are integral parts of N(2)O(3) generation, we predict that nitrosative stress occurs under specific conditions, such as chronic inflammation. In contrast to conditions of stress, nitrosative chemistry may also provide cellular protection through the regulation of critical signaling pathways. Therefore, a careful evaluation of the chemistry of nitrosation based upon specific experimental conditions may provide a better understanding of how the subtle balance between oxidative and nitrosative stress may be involved in the etiology and control of various disease processes.


Archives of Biochemistry and Biophysics | 2008

The chemistry of cell signaling by reactive oxygen and nitrogen species and 4-hydroxynonenal

Henry Jay Forman; Jon M. Fukuto; Thomas W. Miller; Hongqiao Zhang; Alessandra Rinna; Smadar Levy

During the past several years, major advances have been made in understanding how reactive oxygen species (ROS) and nitrogen species (RNS) participate in signal transduction. Identification of the specific targets and the chemical reactions involved still remains to be resolved with many of the signaling pathways in which the involvement of reactive species has been determined. Our understanding is that ROS and RNS have second messenger roles. While cysteine residues in the thiolate (ionized) form found in several classes of signaling proteins can be specific targets for reaction with H(2)O(2) and RNS, better understanding of the chemistry, particularly kinetics, suggests that for many signaling events in which ROS and RNS participate, enzymatic catalysis is more likely to be involved than non-enzymatic reaction. Due to increased interest in how oxidation products, particularly lipid peroxidation products, also are involved with signaling, a review of signaling by 4-hydroxy-2-nonenal (HNE) is included. This article focuses on the chemistry of signaling by ROS, RNS, and HNE and will describe reactions with selected target proteins as representatives of the mechanisms rather attempt to comprehensively review the many signaling pathways in which the reactive species are involved.


Proceedings of the National Academy of Sciences of the United States of America | 2001

On the acidity and reactivity of HNO in aqueous solution and biological systems

Michael D. Bartberger; Jon M. Fukuto; K. N. Houk

The gas phase and aqueous thermochemistry and reactivity of nitroxyl (nitrosyl hydride, HNO) were elucidated with multiconfigurational self-consistent field and hybrid density functional theory calculations and continuum solvation methods. The pKa of HNO is predicted to be 7.2 ± 1.0, considerably different from the value of 4.7 reported from pulse radiolysis experiments. The ground-state triplet nature of NO− affects the rates of acid-base chemistry of the HNO/NO− couple. HNO is highly reactive toward dimerization and addition of soft nucleophiles but is predicted to undergo negligible hydration (Keq = 6.9 × 10−5). HNO is predicted to exist as a discrete species in solution and is a viable participant in the chemical biology of nitric oxide and derivatives.


Biochemical Pharmacology | 1992

Chemical oxidation of N-hydroxyguanidine compounds: Release of nitric oxide, nitroxyl and possible relationship to the mechanism of biological nitric oxide generation

Jon M. Fukuto; Guillermo C. Wallace; Raina Hszieh; Gautam Chaudhuri

N omega-Hydroxy-L-arginine was found to cause vasodilation in arginine-depleted rabbit aorta. It is, therefore, likely to be a biosynthetic intermediate in the conversion of arginine to nitric oxide in this tissue. N-Hydroxyalkylguanidine compounds, including N omega-hydroxy-L-arginine were oxidized with various oxidizing agents and examined for their ability to release nitric oxide. All oxidizing agents tested were capable of oxidizing the N-hydroxyguanidine function but only lead tetra-acetate (Pb(OAc)4) and potassium ferricyanide/hydrogen peroxide (K3FeCN6/H2O2) were capable of generating significant amounts of nitric oxide. Oxidation with K3FeCN6, lead oxide (PbO2) and silver carbonate (Ag2CO3) resulted instead in the release of nitrous oxide (N2O) presumably through the initial release of nitroxyl (HNO).


Toxicology and Applied Pharmacology | 1991

Modulation of rat hepatic microsomal monooxygenase enzymes and cytotoxicity by diallyl sulfide

John F. Brady; Mong Heng Wang; Jun Yan Hong; Fang Xiao; Yan Li; Jeong Sook H. Yoo; Shu M. Ning; Mao Jung Lee; Jon M. Fukuto; Jeanne M. Gapac; Chung S. Yang

Diallyl sulfide (DAS) and other organosulfur compounds inhibit chemically induced carcinogenic and toxic responses in rodent model systems. A possible mechanism of action is the inhibition of the hepatic cytochrome P450IIE1-dependent bioactivation of the procarcinogens and protoxicants. Previous work showed competitive inhibition by DAS of N-nitrosodimethylamine (NDMA) demethylase activity in vitro, and a reduction in the microsomal level of P450IIE1 after in vivo treatment with DAS. The present studies demonstrated a time- and dose-dependent decrease of hepatic microsomal P450IIE1 activity, induction of P450IIB1 and pentoxyresorufin dealkylase activity, and moderate induction of ethoxyresorufin dealkylase activity by oral DAS treatment. DAS treatment elevated P450IIB1 mRNA but had no effect on P450IIE1 mRNA. Treatment with putative metabolites of DAS, diallyl sulfoxide and diallyl sulfone, led to similar modulations in monooxygenase activities, but the decrease of P450IIE1 activity by the sulfone occurred more rapidly. In studies in vitro, diallyl sulfone caused a metabolism-dependent inactivation of P450IIE1, but such inactivation was not observed with DAS or diallyl sulfoxide. The profile of microsomal testosterone metabolism after DAS treatment indicated an enhancement of P450IIB1-dependent 16 beta-hydroxylase activity, and a decrease in 6 beta-hydroxytestosterone production possibly related to a lower level of P450IIIA1 or IIIA2. When rats were subjected to a 48-hr fast and DAS treatment, the starvation-induced microsomal P450IIE1 level was decreased by DAS. Inhibition of hepatotoxicity due to exposure to P450IIE1 substrates, CCl4 and NDMA, by DAS was observed under a variety of treatment schedules.

Collaboration


Dive into the Jon M. Fukuto's collaboration.

Top Co-Authors

Avatar

David A. Wink

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. N. Houk

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Graham Espey

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Douglas D. Thomas

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Feelisch

University of Southampton

View shared research outputs
Researchain Logo
Decentralizing Knowledge