Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Graham Espey is active.

Publication


Featured researches published by Michael Graham Espey.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice

Qi Chen; Michael Graham Espey; Andrew Y. Sun; Chaya Pooput; Kenneth L. Kirk; Murali C. Krishna; Deena Beneda Khosh; Jeanne Drisko; Mark Levine

Ascorbic acid is an essential nutrient commonly regarded as an antioxidant. In this study, we showed that ascorbate at pharmacologic concentrations was a prooxidant, generating hydrogen-peroxide-dependent cytotoxicity toward a variety of cancer cells in vitro without adversely affecting normal cells. To test this action in vivo, normal oral tight control was bypassed by parenteral ascorbate administration. Real-time microdialysis sampling in mice bearing glioblastoma xenografts showed that a single pharmacologic dose of ascorbate produced sustained ascorbate radical and hydrogen peroxide formation selectively within interstitial fluids of tumors but not in blood. Moreover, a regimen of daily pharmacologic ascorbate treatment significantly decreased growth rates of ovarian (P < 0.005), pancreatic (P < 0.05), and glioblastoma (P < 0.001) tumors established in mice. Similar pharmacologic concentrations were readily achieved in humans given ascorbate intravenously. These data suggest that ascorbate as a prodrug may have benefits in cancers with poor prognosis and limited therapeutic options.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivo

Qi Chen; Michael Graham Espey; Andrew Y. Sun; Je-Hyuk Lee; Murali C. Krishna; Emily Shacter; Peter L. Choyke; Chaya Pooput; Kenneth L. Kirk; Garry R. Buettner; Mark Levine

Ascorbate (ascorbic acid, vitamin C), in pharmacologic concentrations easily achieved in humans by i.v. administration, selectively kills some cancer cells but not normal cells. We proposed that pharmacologic ascorbate is a prodrug for preferential steady-state formation of ascorbate radical (Asc•−) and H2O2 in the extracellular space compared with blood. Here we test this hypothesis in vivo. Rats were administered parenteral (i.v. or i.p.) or oral ascorbate in typical human pharmacologic doses (≈0.25–0.5 mg per gram of body weight). After i.v. injection, ascorbate baseline concentrations of 50–100 μM in blood and extracellular fluid increased to peaks of >8 mM. After i.p. injection, peaks approached 3 mM in both fluids. By gavage, the same doses produced ascorbate concentrations of <150 μM in both fluids. In blood, Asc•− concentrations measured by EPR were undetectable with oral administration and always <50 nM with parenteral administration, even when corresponding ascorbate concentrations were >8 mM. After parenteral dosing, Asc•− concentrations in extracellular fluid were 4- to 12-fold higher than those in blood, were as high as 250 nM, and were a function of ascorbate concentrations. By using the synthesized probe peroxyxanthone, H2O2 in extracellular fluid was detected only after parenteral administration of ascorbate and when Asc•− concentrations in extracellular fluid exceeded 100 nM. The data show that pharmacologic ascorbate is a prodrug for preferential steady-state formation of Asc•− and H2O2 in the extracellular space but not blood. These data provide a foundation for pursuing pharmacologic ascorbate as a prooxidant therapeutic agent in cancer and infections.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Nitric oxide-induced cellular stress and p53 activation in chronic inflammation

Lorne J. Hofseth; Shin'ichi Saito; S. Perwez Hussain; Michael Graham Espey; Katrina M. Miranda; Yuzuru Araki; Chamelli Jhappan; Yuichiro Higashimoto; Peijun He; Steven P. Linke; Martha M. Quezado; Irit Zurer; Varda Rotter; David A. Wink; Ettore Appella; Curtis C. Harris

Free radical-induced cellular stress contributes to cancer during chronic inflammation. Here, we investigated mechanisms of p53 activation by the free radical, NO. NO from donor drugs induced both ataxia-telangiectasia mutated (ATM)- and ataxia-telangiectasia mutated and Rad3-related-dependent p53 posttranslational modifications, leading to an increase in p53 transcriptional targets and a G2/M cell cycle checkpoint. Such modifications were also identified in cells cocultured with NO-releasing macrophages. In noncancerous colon tissues from patients with ulcerative colitis (a cancer-prone chronic inflammatory disease), inducible NO synthase protein levels were positively correlated with p53 serine 15 phosphorylation levels. Immunostaining of HDM-2 and p21WAF1 was consistent with transcriptionally active p53. Our study highlights a pivotal role of NO in the induction of cellular stress and the activation of a p53 response pathway during chronic inflammation.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Nitroxyl anion exerts redox-sensitive positive cardiac inotropy in vivo by calcitonin gene-related peptide signaling

Nazareno Paolocci; Walter F. Saavedra; Katrina M. Miranda; Cristian Martignani; Takayoshi Isoda; Joshua M. Hare; Michael Graham Espey; Jon M. Fukuto; Martin Feelisch; David A. Wink; David A. Kass

Nitroxyl anion (NO−) is the one-electron reduction product of nitric oxide (NO⋅) and is enzymatically generated by NO synthase in vitro. The physiologic activity and mechanism of action of NO− in vivo remains unknown. The NO− generator Angelis salt (AS, Na2N2O3) was administered to conscious chronically instrumented dogs, and pressure–dimension analysis was used to discriminate contractile from peripheral vascular responses. AS rapidly enhanced left ventricular contractility and concomitantly lowered cardiac preload volume and diastolic pressure (venodilation) without a change in arterial resistance. There were no associated changes in arterial or venous plasma cGMP. The inotropic response was similar despite reflex blockade with hexamethonium or volume reexpansion, indicating its independence from baroreflex stimulation. However, reflex activation did play a major role in the selective venodilation observed under basal conditions. These data contrasted with the pure NO donor diethylamine/NO, which induced a negligible inotropic response and a more balanced veno/arterial dilation. AS-induced positive inotropy, but not systemic vasodilatation, was highly redox-sensitive, being virtually inhibited by coinfusion of N-acetyl-l-cysteine. Cardiac inotropic signaling by NO− was mediated by calcitonin gene-related peptide (CGRP), as treatment with the selective CGRP-receptor antagonist CGRP(8–37) prevented this effect but not systemic vasodilation. Thus, NO− is a redox-sensitive positive inotrope with selective venodilator action, whose cardiac effects are mediated by CGRP-receptor stimulation. This fact is evidence linking NO− to redox-sensitive cardiac contractile modulation by nonadrenergic/noncholinergic peptide signaling. Given its cardiac and vascular properties, NO− may prove useful for the treatment of cardiovascular diseases characterized by cardiac depression and elevated venous filling pressures.


Antioxidants & Redox Signaling | 2001

Mechanisms of the antioxidant effects of nitric oxide

David A. Wink; Katrina M. Miranda; Michael Graham Espey; Ryzard M. Pluta; Sandra J. Hewett; Carol A. Colton; Michael P. Vitek; Martin Feelisch; Mathew B. Grisham

The Janus face of nitric oxide (NO) has prompted a debate as to whether NO plays a deleterious or protective role in tissue injury. There are a number of reactive nitrogen oxide species, such as N2O3 and ONOO-, that can alter critical cellular components under high local concentrations of NO. However, NO can also abate the oxidation chemistry mediated by reactive oxygen species such as H2O2 and O2- that occurs at physiological levels of NO. In addition to the antioxidant chemistry, NO protects against cell death mediated by H2O2, alkylhydroperoxides, and xanthine oxidase. The attenuation of metal/peroxide oxidative chemistry, as well as lipid peroxidation, appears to be the major chemical mechanisms by which NO may limit oxidative injury to mammalian cells. In addition to these chemical and biochemical properties, NO can modulate cellular and physiological processes to limit oxidative injury, limiting processes such as leukocyte adhesion. This review will address these aspects of the chemical biology of this multifaceted free radical and explore the beneficial effect of NO against oxidative stress.


Proceedings of the National Academy of Sciences of the United States of America | 2003

A biochemical rationale for the discrete behavior of nitroxyl and nitric oxide in the cardiovascular system.

Katrina M. Miranda; Nazareno Paolocci; Tatsuo Katori; Douglas D. Thomas; Eleonora Ford; Michael D. Bartberger; Michael Graham Espey; David A. Kass; Martin Feelisch; Jon M. Fukuto; David A. Wink

The redox siblings nitroxyl (HNO) and nitric oxide (NO) have often been assumed to undergo casual redox reactions in biological systems. However, several recent studies have demonstrated distinct pharmacological effects for donors of these two species. Here, infusion of the HNO donor Angelis salt into normal dogs resulted in elevated plasma levels of calcitonin gene-related peptide, whereas neither the NO donor diethylamine/NONOate nor the nitrovasodilator nitroglycerin had an appreciable effect on basal levels. Conversely, plasma cGMP was increased by infusion of diethylamine/NONOate or nitroglycerin but was unaffected by Angelis salt. These results suggest the existence of two mutually exclusive response pathways that involve stimulated release of discrete signaling agents from HNO and NO. In light of both the observed dichotomy of HNO and NO and the recent determination that, in contrast to the O2/\documentclass[10pt]{article} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \pagestyle{empty} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{O}}_{2}^{-}\end{equation*}\end{document} couple, HNO is a weak reductant, the relative reactivity of HNO with common biomolecules was determined. This analysis suggests that under biological conditions, the lifetime of HNO with respect to oxidation to NO, dimerization, or reaction with O2 is much longer than previously assumed. Rather, HNO is predicted to principally undergo addition reactions with thiols and ferric proteins. Calcitonin gene-related peptide release is suggested to occur via altered calcium channel function through binding of HNO to a ferric or thiol site. The orthogonality of HNO and NO may be due to differential reactivity toward metals and thiols and in the cardiovascular system, may ultimately be driven by respective alteration of cAMP and cGMP levels.


Biological Chemistry | 2004

The chemistry of nitrosative stress induced by nitric oxide and reactive nitrogen oxide species. Putting perspective on stressful biological situations.

Lisa A. Ridnour; Douglas D. Thomas; Daniele Mancardi; Michael Graham Espey; Katrina M. Miranda; Nazareno Paolocci; Martin Feelisch; Jon M. Fukuto; David A. Wink

Abstract This review addresses many of the chemical aspects of nitrosative stress mediated by N(2)O(3). From a cellular perspective, N(2)O(3) and the resulting reactive nitrogen oxide species target specific motifs such as thiols, lysine active sites, and zinc fingers and is dependant upon both the rates of production as well as consumption of NO and must be taken into account in order to access the nitrosative environment. Since production and consumption are integral parts of N(2)O(3) generation, we predict that nitrosative stress occurs under specific conditions, such as chronic inflammation. In contrast to conditions of stress, nitrosative chemistry may also provide cellular protection through the regulation of critical signaling pathways. Therefore, a careful evaluation of the chemistry of nitrosation based upon specific experimental conditions may provide a better understanding of how the subtle balance between oxidative and nitrosative stress may be involved in the etiology and control of various disease processes.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Protein nitration is mediated by heme and free metals through Fenton-type chemistry: an alternative to the NO/O2- reaction.

Douglas D. Thomas; Michael Graham Espey; Michael P. Vitek; Katrina M. Miranda; David A. Wink

The chemical origins of nitrated tyrosine residues (NT) formed in proteins during a variety of pathophysiological conditions remain controversial. Although numerous studies have concluded that NT is a signature for peroxynitrite (ONOO−) formation, other works suggest the primary involvement of peroxidases. Because metal homeostasis is often disrupted in conditions bearing NT, the role of metals as catalysts for protein nitration was examined. Cogeneration of nitric oxide (NO) and superoxide (O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document}), from spermine/NO (2.7 μM/min) and xanthine oxidase (1–28 μM O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document}/min), respectively, resulted in protein nitration only when these species were produced at approximately equivalent rates. Addition of ferriprotoporphyrin IX (hemin) to this system increased nitration over a broad range of O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document} concentrations with respect to NO. Nitration in the presence of superoxide dismutase but not catalase suggested that ONOO− might not be obligatory to this process. Hemin-mediated NT formation required only the presence of NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document} and H2O2, which are stable end-products of NO and O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document} degradation. Ferrous, ferric, and cupric ions were also effective catalysts, indicating that nitration is mediated by species capable of Fenton-type chemistry. Although ONOO− can nitrate proteins, there are severe spatial and temporal constraints on this reaction. In contrast, accumulation of metals and NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document} subsequent to NO synthase activity can result in far less discriminate nitration in the presence of an H2O2 source. Metal catalyzed nitration may account for the observed specificity of protein nitration seen under pathological conditions, suggesting a major role for translocated metals and the labilization of heme in NT formation.


Neuroreport | 1997

Activated human microglia produce the excitotoxin quinolinic acid

Michael Graham Espey; Olga N. Chernyshev; John F. Reinhard; M A. A. Namboodiri; Carol A. Colton

WE aimed to determine the relative role of quinolinic acid synthesis in purified human microglia, monocytederived macrophages and astrocytes in the human brain following immune stimulation. Microglia and macrophages significantly increased quinolinic acid synthesis from tryptophan following activation by either lipopolysaccharide or interferon-γ. Quinolinic acid synthesis by individual microglia was heterogeneous, and its production by activated macrophages was approximately 32-fold greater than its microglial synthesis. Quinolinic acid synthesis by astrocytes was undetectable. Microglia may, therefore, be the primary endogenous cell type responsible for quinolinic acid synthesis in the brain parenchyma. However, under pathological conditions which precipitate blood–brain barrier compromise and/or leukocytic infiltration, intracerebral quinolinic acid may be derived chiefly from cells of the peripheral immune system such as activated macrophages.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Focusing of nitric oxide mediated nitrosation and oxidative nitrosylation as a consequence of reaction with superoxide

Michael Graham Espey; Douglas D. Thomas; Katrina M. Miranda; David A. Wink

The impact of nitric oxide (NO) synthesis on different biological cascades can rapidly change dependent on the rate of NO formation and composition of the surrounding milieu. With this perspective, we used diaminonaphthalene (DAN) and diaminofluorescein (DAF) to examine the nitrosative chemistry derived from NO and superoxide (O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}_{2}^{-}\end{equation*}\end{document}) simultaneously generated at nanomolar to low micromolar per minute rates by spermine/NO decomposition and xanthine oxidase-catalyzed oxidation of hypoxanthine, respectively. Fluorescent triazole product formation from DAN and DAF increased as the ratio of O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}_{2}^{-}\end{equation*}\end{document} to NO approached equimolar, then decreased precipitously as O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}_{2}^{-}\end{equation*}\end{document} exceeded NO. This pattern was also evident in DAF-loaded MCF-7 carcinoma cells and when stimulated macrophages were used as the NO source. Cyclic voltammetry analysis and inhibition studies by using the N2O3 scavenger azide indicated that DAN- and DAF-triazole could be derived from both oxidative nitrosylation (e.g., DAF radical + NO) and nitrosation (NO+ addition). The latter mechanism predominated with higher rates of NO formation relative to O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}_{2}^{-}\end{equation*}\end{document}. The effects of oxymyoglobin, superoxide dismutase, and carbon dioxide were examined as potential modulators of reactant availability for the O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}_{2}^{-}\end{equation*}\end{document} + NO pathway in vivo. The findings suggest that the outcome of NO biosynthesis in a scavenger milieu can be focused by O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}_{2}^{-}\end{equation*}\end{document} toward formation of NO adducts on nucleophilic residues (e.g., amines, thiols, hydroxyl) through convergent mechanisms involving the intermediacy of nitrogen dioxide. These modifications may be favored in microenvironments where the rate of O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}_{2}^{-}\end{equation*}\end{document} production is temporally and spatially contemporaneous with nitric oxide synthase activity, but not in excess of NO generation.

Collaboration


Dive into the Michael Graham Espey's collaboration.

Top Co-Authors

Avatar

David A. Wink

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas D. Thomas

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Lisa A. Ridnour

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Mark Levine

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Martin Feelisch

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony S. Basile

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge