Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jon M. Moorby is active.

Publication


Featured researches published by Jon M. Moorby.


Journal of Nutrition | 2012

Shifts in the Rumen Microbiota Due to the Type of Carbohydrate and Level of Protein Ingested by Dairy Cattle Are Associated with Changes in Rumen Fermentation

Alejandro Belanche; M. Doreau; Joan E. Edwards; Jon M. Moorby; Eric Pinloche; C. J. Newbold

Balancing energy and nitrogen in the rumen is a key to both profitability and environmental sustainability. Four dairy cows were used in a Latin square experimental design to investigate the effect of severe nitrogen underfeeding (110 vs. 80% of requirements) and the type of carbohydrate consumed [neutral detergent fiber rich (FIB) vs. starch rich (STA)] on the rumen ecosystem. These dietary treatments modified both rumen fermentation and microbial populations. Compared with STA diets, consumption of FIB diets increased bacterial and fungal diversity in the rumen and also increased the concentrations of cellulolytic microorganisms, including protozoa (+38%), anaerobic fungi (+59%), and methanogens (+27%). This microbial adaptation to fiber utilization led to similar digestibility values for the 2 carbohydrate sources and was accompanied by a shift in the rumen fermentation patterns; when the FIB diets were consumed, the cows had greater ruminal pH, ammonia concentrations, and molar proportions of acetate and propionate compared with when they consumed the STA diets. Certain rumen microorganisms were sensitive to a shortage of nitrogen; rumen concentrations of ammonia were 49% lower when the low-protein (LP) diets were consumed as were total bacteria (-13%), anaerobic fungi (-28%), methanogens (-27%), protozoa (-19%), cellulolytic bacteria, and microbial diversity compared with when the high-protein (HP) diets were consumed. As a result, the digestibility of the LP diets was less than that of the HP diets. These findings demonstrated that the rumen microbial ecosystem is directly linked to the rumen fermentation pattern and, to some extent, to the efficiency of diet utilization by dairy cattle.


Journal of Agricultural and Food Chemistry | 2010

Oxidative phenols in forage crops containing polyphenol oxidase enzymes

Ifat Parveen; Michael D. Threadgill; Jon M. Moorby; Ana L. Winters

Polyphenol oxidases (PPOs) are copper-containing enzymes that catalyze oxidation of endogenous monophenols to ortho-dihydroxyaryl compounds and of ortho-dihydroxyaryl compounds to ortho-quinones. Subsequent nucleophilic addition reactions of phenols, amino acids, and proteins with the electrophilic ortho-quinones form brown-, black-, or red-colored secondary products associated with the undesired discolouration of fruit and vegetables. Several important forage plants also exhibit significant PPO activity, and a link with improved efficiency of ruminant production has been established. In ruminant animals, extensive degradation of forage proteins, following consumption, can result in high rates of excretion of nitrogen, which contributes to point-source and diffuse pollution. Reaction of quinones with forage proteins leads to the formation of protein-phenol complexes that are resistant to proteolytic activity during ensilage and during rumen fermentation. Thus, PPO in red clover (Trifolium pratense) has been shown to improve protein utilization by ruminants. While PPO activity has been demonstrated in a number of forage crops, little work has been carried out to identify substrates of PPO, knowledge of which would be beneficial for characterizing this trait in these forages. In general, a wide range of 1,2-dihydroxyarenes can serve as PPO substrates because these are readily oxidized because of the ortho positioning of the hydroxy groups. Naturally occurring phenols isolated from forage crops with PPO activity are reviewed. A large number of phenols, which may be directly or indirectly oxidized as a consequence of PPO activity, have been identified in several forage grass, legume, cereal, and brassica species; these include hydroxybenzoic acids, hydroxycinnamates, and flavonoids. In conclusion, a number of compounds are known or postulated to enable PPO activity in important PPO-expressing forage crops. Targeting the matching of these compounds with PPO activity would be a useful plant breeding approach to improve the utilization of feed nitrogen by ruminant livestock and help reduce the environmental impact of livestock agriculture in temperate countries.


Journal of Animal Science | 2012

Bacterial protein degradation by different rumen protozoal groups

Alejandro Belanche; G. de la Fuente; Jon M. Moorby; C. J. Newbold

Bacterial predation by protozoa has the most deleterious effect on the efficiency of N use within the rumen, but differences in activity among protozoal groups are not completely understood. Two in vitro experiments were conducted to identify the protozoal groups more closely related with rumen N metabolism. Rumen protozoa were harvested from cattle and 7 protozoal fractions were generated immediately after sampling by filtration through different nylon meshes at 39 °C, under a CO(2) atmosphere to maintain their activity. Protozoa were incubated with (14)C-labeled bacteria to determine their bacterial breakdown capacity, according to the amount of acid-soluble radioactivity released. Epidinium tended to codistribute with Isotricha and Entodinium with Dasytricha; therefore, their activity was calculated together. This study demonstrated that big Diplodiniinae had the greatest activity per cell (100 ng bacterial CP per protozoa and hour), followed by Epidinium plus Isotricha (36.4), small Diplodiniinae (34.2), and Entodinium plus Dasytricha (14.8), respectively. However, the activity per unit of protozoal volume seemed to vary, depending on the protozoal taxonomy. Small Diplodiniinae had the greatest activity per volume (325 ng bacterial CP per protozoal mm(3) and hour), followed by big Diplodiniinae (154), Entodinium plus Dasytricha (104), and Entodinium plus Dasytricha (25.6). A second experiment was conducted using rumen fluid from holotrich-monofaunated sheep. This showed that holotrich protozoa had a limited bacterial breakdown capacity per cell (Isotricha 9.44 and Dasytricha 5.81 ng bacterial CP per protozoa and hour) and per protozoal volume (5.97 and 76.9 ng bacterial CP per protozoal mm(3) and hour, respectively). Therefore, our findings indicated that a typical protozoal population (10(6) total protozoa/mL composed by Entodinium sp. 88%, Epidinium sp. 7%, and other species 4%) is able to break down ~17% of available rumen bacteria every hour. Entodinium sp. is responsible for most of this bacterial breakdown (70 to 75%), followed by Epidinium sp. (16 to 24%), big Diplodiniinae (4 to 6%), and small Diplodiniinae (2 to 6%), whereas holotrich protozoa have a negligible activity (Dasytricha sp. 0.6 to 1.2% and Isotricha sp. 0.2 to 0.5%). This in vitro information must be carefully interpreted, but it can be used to indicate which protozoal groups should be suppressed to improve microbial protein synthesis in vivo.


Animal Science | 2004

The effect of red clover formononetin content on live-weight gain, carcass characteristics and muscle equol content of finishing lambs

Jon M. Moorby; Mariecia D. Fraser; Vince J. Theobald; Jan Wood; W. Haresign

Moorby, J. M., Fraser, M. D., Theobald, V. J., Wood, J. D., Haresign, W. (2004). The effect of red clover formonetin content on live weight gain, carcass characteristics and muscle equol content of finishing lambs. Animal Science, 79, 303-313. Sponsorship: Meat and Livestock Commission


PLOS ONE | 2015

Does Dietary Mitigation of Enteric Methane Production Affect Rumen Function and Animal Productivity in Dairy Cows

Jolien Bernadet Veneman; Stefan Muetzel; Kenton J. Hart; Catherine L. Faulkner; Jon M. Moorby; Hink B. Perdok; C. J. Newbold

It has been suggested that the rumen microbiome and rumen function might be disrupted if methane production in the rumen is decreased. Furthermore concerns have been voiced that geography and management might influence the underlying microbial population and hence the response of the rumen to mitigation strategies. Here we report the effect of the dietary additives: linseed oil and nitrate on methane emissions, rumen fermentation, and the rumen microbiome in two experiments from New Zealand (Dairy 1) and the UK (Dairy 2). Dairy 1 was a randomized block design with 18 multiparous lactating cows. Dairy 2 was a complete replicated 3 x 3 Latin Square using 6 rumen cannulated, lactating dairy cows. Treatments consisted of a control total mixed ration (TMR), supplementation with linseed oil (4% of feed DM) and supplementation with nitrate (2% of feed DM) in both experiments. Methane emissions were measured in open circuit respiration chambers and rumen samples were analyzed for rumen fermentation parameters and microbial population structure using qPCR and next generation sequencing (NGS). Supplementation with nitrate, but not linseed oil, decreased methane yield (g/kg DMI; P<0.02) and increased hydrogen (P<0.03) emissions in both experiments. Furthermore, the effect of nitrate on gaseous emissions was accompanied by an increased rumen acetate to propionate ratio and consistent changes in the rumen microbial populations including a decreased abundance of the main genus Prevotella and a decrease in archaeal mcrA (log10 copies/ g rumen DM content). These results demonstrate that methane emissions can be significantly decreased with nitrate supplementation with only minor, but consistent, effects on the rumen microbial population and its function, with no evidence that the response to dietary additives differed due to geography and different underlying microbial populations.


Ecological Applications | 2006

DETERMINING DIET COMPOSITION ON COMPLEX SWARDS USING n‐ALKANES AND LONG‐CHAIN FATTY ALCOHOLS

Mariecia D. Fraser; Vince J. Theobald; Jon M. Moorby

We conducted an experiment to quantify the accuracy of methods based on n-alkanes and long-chain fatty alcohols for determining the diet composition of animals grazing complex swards. We cut forage from two indigenous vegetation communities, a Molinia caerulea-dominated grassland and a Calluna vulgaris-dominated dwarf-shrub community, and offered it to mature ewes in different ratios in a zero-grazing experiment. Nine dietary categories were identified within the forage offered: Molinia caerulea, Festuca spp., Juncus effusus, Carex spp., Calluna vulgaris, Erica tetralix, Vaccinium myrtillus, and dead grass. Samples of each of these categories together with fecal samples from each individual animal were analyzed for n-alkane and long-chain fatty alcohol concentrations. We analyzed the data using optimization software to minimize the sum of squares differences in the proportional profiles of n-alkanes and fatty alcohols in the diet and feces. Different combinations of n-alkane and fatty alcohols were investigated to assess which gave the most accurate measures of diet composition from the fecal profile. The most accurate estimates were obtained using combinations of the n-alkanes C25, C29, C31, and C33 and the long-chain fatty alcohols 1-C24-ol, 1-C28-ol, and 1-C30-ol, and these gave values for Lins concordance correlation coefficient between estimated and actual values of >0.98. Our results demonstrate that n-alkanes and long-chain fatty alcohols can be used to estimate several components within the diet of animals grazing complex swards. Diet composition information obtained using this methodology has wide-ranging applications in terms of the assessment of the impact of grazing animals on particular ecosystems or the quantification of nutrient supply to the animal from different selection choices.


Livestock Production Science | 2002

Effects of varying the energy and protein supply to dry cows on high-forage systems

Jon M. Moorby; Richard J. Dewhurst; Roger T. Evans; William J. Fisher

Abstract A total of 57 Holstein–Friesian dairy cows were used to investigate the effect of dry period energy and protein intake on performance in the early part of the subsequent lactation, when animals were given a single diet based on low-quality grass silage. Animals were balanced for parity across four dietary treatments for the last 5 weeks of gestation. Four dietary treatments were offered in factorial arrangement of high and low energy forages offered ad libitum with or without a high protein supplement. The two forage treatments were a ryegrass silage only and a mix of the same silage and barley straw (60:40 on a dry matter basis), and the protein supplement was 0.5 kg/day high protein maize gluten meal. Dry period diet forage intake was significantly higher for silage diets than for silage and straw mix diets but was not affected by the protein supplement. At 3 weeks before calving, N balance was significantly greater on the silage diets, and was significantly increased by the protein supplement. A period of 1 week before calving, there was no difference between treatments in body weight or body condition score. After calving, there were no residual effects of dry period treatment on feed intake, although milk and protein yields were significantly higher for the first month of lactation from animals previously offered the two silage-based diets; there was no effect of protein supplement. Subclinical ketosis in the animals may have limited all animals, production capabilities, which was lower than expected for the genetic potential of the animals, due to poor early lactation diets. It is concluded that improved dry period nutrition cannot compensate for poor early lactation diets to enable cows to achieve good production levels.


Animal Science | 1996

The influence of dietary energy source and dietary protein level on milk protein concentration from dairy cows

Jon M. Moorby; Richard J. Dewhurst; Cledwyn Thomas; Stuart Marsden

To investigate the effects of energy source and protein level of diets on milk protein content, 12 multiparous Holstein-Friesian cows were used in a 4 × 4 Latin square change-over experiment with 4-week periods. Four diets were offered, with ad libitum silage as proportionately 0·40 of the diet, and the remaining 0·60 as one of four concentrates, two based on barley and two on molassed sugar-beet pulp. Two protein levels were achieved by altering the amounts of digestible undegraded protein in the concentrates, with all diets formulated to supply equal quantities of rumen degradable protein. There was no effect of diet on dry-matter intakes. Both starch and high dietary protein levels significantly increased milk protein concentration (P < 0·05), but had no effects on milk fat and lactose concentrations. Mean milk yields were significantly higher (P < 0·05) with increased dietary protein. Dietary protein significantly affected the yields of milk protein (P < 0·01) and lactose (P < 0·05) but not that of fat. Urinary allantoin excretion was significantly greater with both high protein (P < 0·05) and starch-based diets (P < 0·05). No significant interaction effects were found. It is concluded that dietary effects were due largely to differences in supply of rumen degradable protein; increases in milk protein concentration were therefore brought about by increasing the protein supply to the animal.


Research in Veterinary Science | 2002

Plasma metabolites indicate energy metabolism disruption during the preclinical phase of bovine spongiform encephalopathy infection

Jon M. Moorby; P. Begley; Robert J. Nash; Michael K. Theodorou; A. R. Austin

During the preclinical phase of bovine spongiform encephalopathy (BSE), significantly increased concentrations of lactic acid were measured in the blood of infected dairy cows. Other plasma metabolites, including alanine, leucine, serine, and glutamic acid, also showed significantly altered concentrations in the preclinical BSE animals compared to a control group. This appears consistent with the exaggerated stress response observed in clinical BSE, and precedes the development of clinical signs and overt behavioural changes. A number of other plasma metabolites including other amino acids and components of the plasma fatty acid content showed no association with BSE status.


The Journal of Agricultural Science | 2015

Effect of breed and pasture type on methane emissions from weaned lambs offered fresh forage

Mariecia D. Fraser; Hannah Rachael Fleming; Vince J. Theobald; Jon M. Moorby

SUMMARY To investigate the extent to which enteric methane (CH4) emissions from growing lambs are explained by simple body weight and diet characteristics, a 2 × 2 Latin square changeover design experiment was carried out using two sheep breeds and two fresh pasture types. Weaned lambs of two contrasting breed types were used: Welsh Mountain (WM, a small, hardy hill breed) and Welsh Mule × Texel (TexX, prime lamb) (n = 8 per breed). The lambs were zero-grazed on material cut from recently reseeded perennial ryegrass and extensively managed permanent pasture. In each experimental period, individual ad libitum dry matter intake (DMI) was determined indoors following an adaptation period of 2 weeks, and CH4 emissions were measured individually in open-circuit respiration chambers over a period of 3 days. Although total daily CH4 emissions were lower for the WM lambs than for the TexX lambs (13·3 v. 15·7 g/day, respectively) when offered fresh forage, the yield of CH4 per unit DMI was similar for the two breed types (16·4 v. 17·7 g CH4/kg DMI). Total output of CH4 per day was higher when lambs were offered ryegrass compared with permanent pasture (16·1 v. 12·9 g/day, respectively), which was probably driven by differences in DMI (986 v. 732 g/day). Methane emissions per unit DMI (16·4 v. 17·7 g CH4/kg DMI) and proportion of gross energy intake excreted as CH4 (0·052 v. 0·056 MJ/MJ) were both higher on the permanent pasture. No forage × breed type interactions were identified. The results indicate that forage type had a greater impact than breed type on CH4 emissions from growing weaned lambs. It can be concluded that when calculating CH4 emissions for inventory purposes, it is more important to know what forages growing lambs are consuming than to know what breeds they are.

Collaboration


Dive into the Jon M. Moorby's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John C. MacRae

Rowett Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge