Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jon N. Havenhand is active.

Publication


Featured researches published by Jon N. Havenhand.


Current Biology | 2008

Near-future levels of ocean acidification reduce fertilization success in a sea urchin

Jon N. Havenhand; Fenina Raphaela Buttler; Michael C. Thorndyke; Jane E. Williamson

Summary Although it is widely believed that seawater is chemically well-buffered, CO 2 -induced acidification of the worlds oceans threatens the viability of many species [1–3]. Research to date has focused on the responses of adult stages of calcifying taxa to gross pH changes relevant for the years 2200–2400 [3,4]. We investigated the consequences of exposure of gametes and larvae of the sea urchin Heliocidaris erythrogramma to CO 2 -induced acidification by −0.4 pH units (the upper limit of predictions for the year 2100 [5]), and found statistically significant reductions in sperm swimming speed and percent sperm motility. We predicted the effects of these changes using an established model [6], and tested fertilization success experimentally in assays using the same gametes and pH treatments. Observed reductions in fertilization success corresponded closely to model predictions (24% reduction). If general, these findings have important implications for the reproductive and population viability of broadcast spawning marine species in the future acidified ocean.


Nature | 2005

Behavioural ecology: transient sexual mimicry leads to fertilization.

Roger T. Hanlon; Marie-Jose Naud; Paul William Shaw; Jon N. Havenhand

Sexual mimicry among animals is widespread, but does it impart a fertilization advantage in the widely accepted ‘sneak–guard’ model of sperm competition? Here we describe field results in which a dramatic facultative switch in sexual phenotype by sneaker-male cuttlefish leads to immediate fertilization success, even in the presence of the consort male. These results are surprising, given the high rate at which females reject copulation attempts by males, the strong mate-guarding behaviour of consort males, and the high level of sperm competition in this complex mating system.


PLOS ONE | 2012

Individual Variability in Reproductive Success Determines Winners and Losers under Ocean Acidification: A Case Study with Sea Urchins

Peter Schlegel; Jon N. Havenhand; Michael R. Gillings; Jane E. Williamson

Background Climate change will lead to intense selection on many organisms, particularly during susceptible early life stages. To date, most studies on the likely biotic effects of climate change have focused on the mean responses of pooled groups of animals. Consequently, the extent to which inter-individual variation mediates different selection responses has not been tested. Investigating this variation is important, since some individuals may be preadapted to future climate scenarios. Methodology/Principal Findings We examined the effect of CO2-induced pH changes (“ocean acidification”) in sperm swimming behaviour on the fertilization success of the Australasian sea urchin Heliocidaris erythrogramma, focusing on the responses of separate individuals and pairs. Acidification significantly decreased the proportion of motile sperm but had no effect on sperm swimming speed. Subsequent fertilization experiments showed strong inter-individual variation in responses to ocean acidification, ranging from a 44% decrease to a 14% increase in fertilization success. This was partly explained by the significant relationship between decreases in percent sperm motility and fertilization success at ΔpH = 0.3, but not at ΔpH = 0.5. Conclusions and Significance The effects of ocean acidification on reproductive success varied markedly between individuals. Our results suggest that some individuals will exhibit enhanced fertilization success in acidified oceans, supporting the concept of ‘winners’ and ‘losers’ of climate change at an individual level. If these differences are heritable it is likely that ocean acidification will lead to selection against susceptible phenotypes as well as to rapid fixation of alleles that allow reproduction under more acidic conditions. This selection may ameliorate the biotic effects of climate change if taxa have sufficient extant genetic variation upon which selection can act.


Ecology | 2005

INCREASING INTRASPECIFIC DIVERSITY ENHANCES SETTLING SUCCESS IN A MARINE INVERTEBRATE

Lars Gamfeldt; Johan Wallén; Per R. Jonsson; Kent Berntsson; Jon N. Havenhand

Theoretical and empirical research during the last decade suggests that increasing species richness often enhances ecosystem processes such as productivity, nutrient cycling, or resistance to disturbance. By analogous reasoning, it can be hypothesized that genetic diversity within species will have equivalent effects; however, this hypothesis has rarely been tested. We present experimental support for the positive effects of intraspecific diversity on a key trait: larval settlement in a marine invertebrate, the barnacle Balanus improvisus. Varying within-species diversity levels of an animal over nine experiments, we found increasing larval settlement with increasing diversity (one, two, or three parental broods). Possible mechanisms explaining this pattern include: (1) facilitation of gregarious response through the presence of founder genotypes, and (2) ensuring genetic complementarity to increase future reproductive potential. Our results indicate that changing intraspecific genetic diversity could have hitherto unrecognized community-scale implications for larval recruitment and space occupancy.


Journal of Experimental Marine Biology and Ecology | 1988

Effects of the planktonic flagellate Chrysochromulina polylepis Manton et Park on fertilization and early development of the ascidian Ciona intestinalis (L.) and the blue mussel Mytilus edulis L

Åke Granmo; Jon N. Havenhand; Kerstin Magnusson; Ib Svane

In late spring 1988, a bloom of the planktonic green alga Chrysochromulina polylepis Manton et Park along the coasts of the Skagerrak caused mortality of many species of fish and marine invertebrate. C. polylepis was found to be acutely toxic to eggs and larvae of the ascidian Ciona intestinalis (L.) and the bivalveMytilus edulis L. at algal concentrations commonly found in coastal waters. In both species, the fertilization of ova and successful development of embryos was completely inhibited. This is the first time that such toxic effects have been reported for C. polylepis. The results are interpreted as demonstrating the possibility of a severe reduction in larval settlement and recruitment in affected areas.


Evolution | 2008

BARRIERS TO CROSS‐FERTILIZATION BETWEEN POPULATIONS OF A WIDELY DISPERSED POLYCHAETE SPECIES ARE UNLIKELY TO HAVE ARISEN THROUGH GAMETIC COMPATIBILITY ARMS‐RACES

Craig A. Styan; Elena K. Kupriyanova; Jon N. Havenhand

Abstract Although there are theoretical reasons to suspect that gametic incompatibility may develop readily among populations of broadcast spawning marine invertebrates, there have been very few studies documenting geographic patterns of interpopulation incompatibility for any species. To address this we determined how successfully individuals of the intertidal serpulid polychaete, Galeolaria caespitosa, can cross-fertilize within and among populations from across temperate Australia. Fertilization assays revealed asymmetrical differences between very distantly located populations from different coasts, with near-complete incompatibility between eggs from Sydney with sperm from Adelaide, but the reverse cross (Adelaide eggs, Sydney sperm) was reasonably compatible. Although that pattern was congruent with a clear difference in Cytochrome B sequences between worms on the south and east coasts of Australia, we also detected some indication of interpopulation incompatibility within the genetic grouping on east coast, between two populations separated by only 220 km. We then assessed whether commonly proposed gametic compatibility arms-races could account for these patterns. Our results suggest reduced gametic compatibility may reduce a females maximum fertilization potential, resulting in a cost to this potential mechanism for reducing polyspermy. Consequently, the apparently rapid development of reproductive barriers here seems unlikely to have been driven by arms-races involving sexual conflict over fertilization rate.


PLOS ONE | 2010

Indiscriminate Males: Mating Behaviour of a Marine Snail Compromised by a Sexual Conflict?

Kerstin Johannesson; Sara Hintz Saltin; Iris Duranovic; Jon N. Havenhand; Per R. Jonsson

Background In promiscuous species, male fitness is expected to increase with repeated matings in an open-ended fashion (thereby increasing number of partners or probability of paternity) whereas female fitness should level out at some optimal number of copulations when direct and indirect benefits still outweigh the costs of courtship and copulation. After this fitness peak, additional copulations would incur female fitness costs and be under opposing selection. Hence, a sexual conflict over mating frequency may evolve in species where females are forced to engage in costly matings. Under such circumstance, if females could avoid male detection, significant fitness benefits from such avoidance strategies would be predicted. Methodology/Principal Findings Among four Littorina species, one lives at very much higher densities and has a longer mating season than the other three species. Using video records of snail behaviour in a laboratory arena we show that males of the low-density species discriminate among male and female mucous trails, trailing females for copulations. In the high-density species, however, males fail to discriminate between male and female trails, not because males are unable to identify female trails (which we show using heterospecific females), but because females do not, as the other species, add a gender-specific cue to their trail. Conclusions/Significance We conclude that there is likely a sexual conflict over mating frequency in the high-density species (L. saxatilis) owing to females most likely being less sperm-limited in this species. This has favoured the evolution of females that permanently or optionally do not release a cue in the mucus to decrease excessive and costly matings resulting in unusually high frequencies of male-male copulating attempts in the wild. This is one of few examples of masking gender identity to obtain fewer matings.


Molecular Ecology | 2013

Investigating a possible role for the bacterial signal molecules N‐acylhomoserine lactones in Balanus improvisus cyprid settlement

Karen Tait; Jon N. Havenhand

Increased settlement on bacterial biofilms has been demonstrated for a number of marine invertebrate larvae, but the nature of the cue(s) responsible is not well understood. We tested the hypothesis that the bay barnacle Balanus improvisus utilizes the bacterial signal molecules N‐acylhomoserine lactones (AHLs) as a cue for the selection of sites for permanent attachment. Single species biofilms of the AHL‐producing bacteria Vibrio anguillarum, Aeromonas hydrophila and Sulfitobacter sp. BR1 were attractive to settling cypris larvae of B. improvisus. However, when AHL production was inactivated, either by mutation of the AHL synthetic genes or by expression of an AHL‐degrading gene (aiiA), the ability of the bacteria to attract cyprids was abolished. In addition, cyprids actively explored biofilms of E. coli expressing the recombinant AHL synthase genes luxI from Vibrio fischeri (3‐oxo‐C6‐HSL), rhlI from Pseudomonas aeruginosa (C4‐HSL/C6‐HSL), vanI from V. anguillarum (3‐oxo‐C10‐HSL) and sulI from Sulfitobacter sp. BR1 (C4‐HSL, 3‐hydroxy‐C6‐HSL, C8‐HSL and 3‐hydroxy‐C10‐HSL), but not E. coli that did not produce AHLs. Finally, synthetic AHLs (C8‐HSL, 3‐oxo‐C10‐HSL and C12‐HSL) at concentrations similar to those found within natural biofilms (5 μm) resulted in increased cyprid settlement. Thus, B. improvisus cypris exploration of and settlement on biofilms appears to be mediated by AHL‐signalling bacteria in the laboratory. This adds to our understanding of how quorum sensing inhibition may be used as for biofouling control. Nonetheless, the significance of our results for larvae settling naturally in the field, and the mechanisms that underlay the observed responses to AHLs, is as yet unknown.


Marine Pollution Bulletin | 2014

Sperm swimming in the polychaete Galeolaria caespitosa shows substantial inter-individual variability in response to future ocean acidification

Peter Schlegel; Jon N. Havenhand; Nicolas Obadia; Jane E. Williamson

The rapidity of ocean acidification intensifies selection pressure for resilient phenotypes, particularly during sensitive early life stages. The scope for selection is greater in species with greater within-species variation in responses to changing environments, thus enhancing the potential for adaptation. We investigated among-male variation in sperm swimming responses (percent motility and swimming speeds) of the serpulid polychaete Galeolaria caespitosa to near- (ΔpH -0.3) and far-future ocean acidification (ΔpH -0.5). Responses of sperm swimming to acidification varied significantly among males and were overall negative. Robust sperm swimming behavior under near-future ocean acidification in some males may ameliorate climate change impacts, if traits associated with robustness are heritable, and thereby enhance the potential for adaptation to far-future conditions. Reduced sperm swimming in the majority of male G. caespitosa may decrease their fertilization success in a high CO2 future ocean. Resultant changes in offspring production could affect recruitment success and population fitness downstream.


PLOS ONE | 2015

Climate Envelope Modeling and Dispersal Simulations Show Little Risk of Range Extension of the Shipworm, Teredo navalis (L.), in the Baltic Sea

Christin Appelqvist; Zyad Al-Hamdani; Per R. Jonsson; Jon N. Havenhand

The shipworm, Teredo navalis, is absent from most of the Baltic Sea. In the last 20 years, increased frequency of T. navalis has been reported along the southern Baltic Sea coasts of Denmark, Germany, and Sweden, indicating possible range-extensions into previously unoccupied areas. We evaluated the effects of historical and projected near-future changes in salinity, temperature, and oxygen on the risk of spread of T. navalis in the Baltic. Specifically, we developed a simple, GIS-based, mechanistic climate envelope model to predict the spatial distribution of favourable conditions for adult reproduction and larval metamorphosis of T. navalis, based on published environmental tolerances to these factors. In addition, we used a high-resolution three-dimensional hydrographic model to simulate the probability of spread of T. navalis larvae within the study area. Climate envelope modeling showed that projected near-future climate change is not likely to change the overall distribution of T. navalis in the region, but will prolong the breeding season and increase the risk of shipworm establishment at the margins of the current range. Dispersal simulations indicated that the majority of larvae were philopatric, but those that spread over a wider area typically spread to areas unfavourable for their survival. Overall, therefore, we found no substantive evidence for climate-change related shifts in the distribution of T. navalis in the Baltic Sea, and no evidence for increased risk of spread in the near-future.

Collaboration


Dive into the Jon N. Havenhand's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sam Dupont

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Per R. Jonsson

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Craig A. Styan

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge