Laura J. Falkenberg
University College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laura J. Falkenberg.
Journal of Applied Ecology | 2013
Laura J. Falkenberg; Sean D. Connell; Bayden D. Russell
Summary Synergies among stressors drive unanticipated changes to alternative states, yet little has been done to assess whether alleviating one or more contributing stressors may disrupt these interactions. It would be particularly useful to understand whether the synergistic effects of global and local stressors could be alleviated, leading to slower change or faster recovery, if conditions under the control of local management alone were managed (i.e. nutrient pollution). We utilized field-based mesocosms to manipulate CO2 (i.e. forecasted global concentrations) and nutrients (i.e. local pollution) to test the hypothesis that, where synergies exist, reducing one contributing stressor would limit the effect of the other. In testing this hypothesis, we considered the response of turfing algae, which can displace kelp forests on urbanized coastlines. Initial manipulations of CO2 and nutrient enrichment produced an anticipated synergistic effect on the biomass of turfing algae. Following exposure of algal turfs to a combination of enriched nutrients and CO2, a subsequent reduction in nutrients was able to substantially slow further increases in turf growth. Despite this substantial effect, the historical legacy of previous nutrient enrichment was evident as greater turf was maintained relative to ambient conditions (i.e. ambient CO2 and nutrients). Such legacies of past stressors may be stubborn (e.g. persist as intergenerational change) where the alternative state (i.e. turf algae) has substantial resilience to restorative actions. Synthesis and applications. As stressors accumulate across global to local scales, some combine to produce synergistic effects which cause changes of disproportionate ecological magnitude. While strong synergies attract heavy scrutiny, there remains substantial merit in assessing whether their influence can be ameliorated by managing a contributing stressor. Of note, we show that by reducing a locally determined stressor (nutrients), its synergistic effects with a globally determined stressor (CO2 enrichment) on a key taxon (turf algae) may be substantially reduced. These results suggest that in the face of changing climate (e.g. ocean acidification), the management of local stressors (e.g. water pollution) may have a greater contribution in determining the dominant state than current thinking allows.
PLOS ONE | 2012
Laura J. Falkenberg; Bayden D. Russell; Sean D. Connell
Foundation species, such as kelp, exert disproportionately strong community effects and persist, in part, by dominating taxa that inhibit their regeneration. Human activities which benefit their competitors, however, may reduce stability of communities, increasing the probability of phase-shifts. We tested whether a foundation species (kelp) would continue to inhibit a key competitor (turf-forming algae) under moderately increased local (nutrient) and near-future forecasted global pollution (CO2). Our results reveal that in the absence of kelp, local and global pollutants combined to cause the greatest cover and mass of turfs, a synergistic response whereby turfs increased more than would be predicted by adding the independent effects of treatments (kelp absence, elevated nutrients, forecasted CO2). The positive effects of nutrient and CO2 enrichment on turfs were, however, inhibited by the presence of kelp, indicating the competitive effect of kelp was stronger than synergistic effects of moderate enrichment of local and global pollutants. Quantification of physicochemical parameters within experimental mesocosms suggests turf inhibition was likely due to an effect of kelp on physical (i.e. shading) rather than chemical conditions. Such results indicate that while forecasted climates may increase the probability of phase-shifts, maintenance of intact populations of foundation species could enable the continued strength of interactions and persistence of communities.
Conservation Biology | 2017
Sean D. Connell; Milena Fernandes; Owen W. Burnell; Zoë A. Doubleday; Kingsley J. Griffin; Andrew D. Irving; Jonathan Y.S. Leung; Samuel Owen; Bayden D. Russell; Laura J. Falkenberg
Although the public desire for healthy environments is clear-cut, the science and management of ecosystem health has not been as simple. Ecological systems can be dynamic and can shift abruptly from one ecosystem state to another. Such unpredictable shifts result when ecological thresholds are crossed; that is, small cumulative increases in an environmental stressor drive a much greater change than could be predicted from linear effects, suggesting an unforeseen tipping point is crossed. In coastal waters, broad-scale seagrass loss often occurs as a sudden event associated with human-driven nutrient enrichment (eutrophication). We tested whether the response of seagrass ecosystems to coastal nutrient enrichment is subject to a threshold effect. We exposed seagrass plots to different levels of nutrient enrichment (dissolved inorganic nitrogen) for 10 months and measured net production. Seagrass response exhibited a threshold pattern when nutrient enrichment exceeded moderate levels: there was an abrupt and large shift from positive to negative net leaf production (from approximately 0.04 leaf production to 0.02 leaf loss per day). Epiphyte load also increased as nutrient enrichment increased, which may have driven the shift in leaf production. Inadvertently crossing such thresholds, as can occur through ineffective management of land-derived inputs such as wastewater and stormwater runoff along urbanized coasts, may account for the widely observed sudden loss of seagrass meadows. Identification of tipping points may improve not only adaptive-management monitoring that seeks to avoid threshold effects, but also restoration approaches in systems that have crossed them.
AMBIO: A Journal of the Human Environment | 2017
Laura J. Falkenberg; Adeline Tubb
Human societies derive economic benefit from marine systems, yet these benefits may be modified as humans drive environmental change. Here, we conducted the first systematic review of literature on the potential economic effects of ocean acidification. We identified that while there is a growing literature discussing this topic, assessments of the direction and magnitude of anticipated economic change remain limited. The few assessments which have been conducted indicate largely negative economic effects of ocean acidification. Insights are, however, limited as the scope of the studies remains restricted. We propose that understanding of this topic will benefit from using standard approaches (e.g. timescales and emissions scenarios) to consider an increasing range of species/habitats and ecosystem services over a range of spatial scales. The resulting understanding could inform decisions such that we maintain, or enhance, economic services obtained from future marine environments.
Climate Change Responses | 2015
Giulia Ghedini; Bayden D. Russell; Laura J. Falkenberg; Sean D. Connell
BackgroundThe ecological consequences of climate change will be driven by a combination of both gradual and abrupt changes in climatic conditions. Despite growing evidence that abrupt abiotic change of extreme events may profoundly alter ecological processes, it remains unclear how such events may combine with longer-term global and local disturbances. Here, we focused on a key process of herbivory and tested how its strength would change in response to forecasted global (CO2 enrichment) and local disturbances (nutrient enrichment) under abrupt (heat wave) or gradual (future temperature) changes in temperature, using an herbivorous gastropod and turf algae interaction within kelp forests as a model system.ResultsThe heat wave caused the greatest magnitude of change in consumption across all treatment combinations. The positive effect of nutrient enrichment on consumption was magnified by increasing temperature, but caused surprisingly intense herbivory when combined with the heat wave. Carbon and nutrient enrichments individually increased consumption with nitrogen overriding the positive effects of CO2.ConclusionsThese results not only reveal that the strength of ecological responses to extreme events may substantially exceed those manifested under ‘average’ future conditions, but also that the effects of extremes may be exacerbated by local disturbances. If disproportionate ecological change occurs where extreme events overlap with local disturbances, scientists and managers will need to recognize spatial and temporal heterogeneities of environmental change to think beyond averages.
Global Change Biology | 2009
Bayden D. Russell; Jo Anne I Thompson; Laura J. Falkenberg; Sean D. Connell
Oecologia | 2013
Laura J. Falkenberg; Bayden D. Russell; Sean D. Connell
Marine Ecology Progress Series | 2013
Laura J. Falkenberg; Bayden D. Russell; Sean D. Connell
Marine Ecology Progress Series | 2014
Laura J. Falkenberg; Sean D. Connell; Bayden D. Russell
Sustainability | 2010
Laura J. Falkenberg; Owen W. Burnell; Sean D. Connell; Bayden D. Russell