Jon Ove Hagen
University of Oslo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jon Ove Hagen.
Science | 2013
Alex S. Gardner; Geir Moholdt; J. Graham Cogley; Bert Wouters; Anthony A. Arendt; John Wahr; Etienne Berthier; Regine Hock; W. Tad Pfeffer; Georg Kaser; Stefan R. M. Ligtenberg; Tobias Bolch; Martin Sharp; Jon Ove Hagen; Michiel R. van den Broeke; Frank Paul
Melting Away We assume the Greenland and Antarctica ice sheets are the main drivers of global sea-level rise, but how large is the contribution from other sources of glacial ice? Gardner et al. (p. 852) synthesize data from glacialogical inventories to find that glaciers in the Arctic, Canada, Alaska, coastal Greenland, the southern Andes, and high-mountain Asia contribute approximately as much melt water as the ice sheets themselves: 260 billion tons per year between 2003 and 2009, accounting for about 30% of the observed sea-level rise during that period. The contribution of glaciers to sea level rise is nearly as much as that of the Greenland and Antarctic Ice Sheets combined. Glaciers distinct from the Greenland and Antarctic Ice Sheets are losing large amounts of water to the world’s oceans. However, estimates of their contribution to sea level rise disagree. We provide a consensus estimate by standardizing existing, and creating new, mass-budget estimates from satellite gravimetry and altimetry and from local glaciological records. In many regions, local measurements are more negative than satellite-based estimates. All regions lost mass during 2003–2009, with the largest losses from Arctic Canada, Alaska, coastal Greenland, the southern Andes, and high-mountain Asia, but there was little loss from glaciers in Antarctica. Over this period, the global mass budget was –259 ± 28 gigatons per year, equivalent to the combined loss from both ice sheets and accounting for 29 ± 13% of the observed sea level rise.
Polar Research | 2002
Harald Svendsen; Agnieszka Beszczynska-Möller; Jon Ove Hagen; Bernard Lefauconnier; Vigdis Tverberg; Sebastian Gerland; Jon Børre Ørbæk; Kai Bischof; Carlo Papucci; Marek Zajaczkowski; Roberto Azzolini; Oddbjørn Bruland; Christian Wiencke
Kongsfjorden-Krossfjorden and the adjacent West Spitsbergen Shelf meet at the common mouth of the two fjord arms. This paper presents our most up-to-date information about the physical environment of this fjord system and identifies important gaps in knowledge. Particular attention is given to the steep physical gradients along the main fjord axis, as well as to seasonal environmental changes. Physical processes on different scales control the large-scale circulation and small-scale (irreversible) mixing of water and its constituents. It is shown that, in addition to the tide, run-off (glacier ablation, snowmelt, summer rainfall and ice calving) and local winds are the main driving forces acting on the upper water masses in the fjord system. The tide is dominated by the semi-diurnal component and the freshwater supply shows a marked seasonal variation pattern and also varies interannually. The wind conditions are characterized by prevailing katabatic winds, which at times are strengthened by the geostrophic wind field over Svalbard. Rotational dynamics have a considerable influence on the circulation patterns within the fjord system and give rise to a strong interaction between the fjord arms. Such dynamics are also the main reason why variations in the shelf water density field, caused by remote forces (tide and coastal winds), propagate as a Kelvin wave into the fjord system. This exchange affects mainly the intermediate and deep water, which is also affected by vertical convection processes driven by cooling of the surface and brine release during ice formation in the inner reaches of the fjord arms. Further aspects covered by this paper include the geological and geomorphological characteristics of the Kongsfjorden area, climate and meteorology, the influence of glaciers, freshwater supply, sea ice conditions, sedimentation processes as well as underwater radiation conditions. The fjord system is assumed to be vulnerable to possible climate changes, and thus is very suitable as a site for the demonstration and investigation of phenomena related to climate change.
Journal of Glaciology | 1996
Helgi Björnsson; Yngvar Gjessing; Svein-Erik Hamran; Jon Ove Hagen; Olav Liestøl; Finnur Pálsson; Björn Erlingsson
Radio-echo soundings provide an effective tool for mapping the thermal regimes of polythermal glaciers on a regional scale. Radar signals of 320-370 MHz penetrate ice at sub-freezing temperatures but are reflected from the top of layers of ice which are at the melting point and contain water. Radar signals of 5-20 MHz, on the other hand, see through both the cold and the temperate ice down to the glacier bed. Radio-echo soundings at these frequencies have been used to investigate the thermal regimes of four polythermal glaciers in Svalbard: Kongsvegen, Uversbreen. Midre Lovenbreen and Austre Broggerbreen. In the ablation area of Kongsvegen, a cold surface layer (50-160m) thick was underlain by a warm basal layer which is advected from the temperate accumulation area. The surface ablation of this cold layer may be compensated by freezing at its lower cold-temperate interface. This requires that the free water content in the ice at the freezing interface is about 1% of the volume. The cold surface layer is thicker beneath medial moraines and where cold-based hanging glaciers enter the main ice stream. On Uversbreen the thermal regime was similar to that of Kongsvegen. A temperate hole was found in the otherwise cold surface layer of the ablation area in a surface depression between Kongsvegen and Uversbreen where meltwater accumulates during the summer (near the subglacial lake Setevatnet, 250 m a.s.l.). Lovenbreen was frozen to the bed at the snout and along all the mountain slopes but beneath the central part of the glacier a warm basal layer (up to 50m) thick was fed by temperate ice from two cirques. On Austre Broggerbreen. a temperate basal layer was not detected by radio-echo soundings but the basal ice was observed to be at the melting point in two boreholes.
Polar Research | 2003
Jon Ove Hagen; Jack Kohler; Kjetil Melvold; Jan-Gunnar Winther
Gain or loss of the freshwater stored in Svalbard glaciers has both global implications for sea level and, on a more local scale, impacts upon the hydrology of rivers and the freshwater flux to fjords. This paper gives an overview of the potential runoff from the Svalbard glaciers. The freshwater flux from basins of different scales is quantified. In small basins (A < 10 km2), the extra runoff due to the negative mass balance of the glaciers is related to the proportion of glacier cover and can at present yield more than 20% higher runoff than if the glaciers were in equilibrium with the present climate. This does not apply generally to the ice masses of Svalbard, which are mostly much closer to being in balance. The total surface runoff from Svalbard glaciers due to melting of snow and ice is roughly 25 ± 5 km3 a?1, which corresponds to a specific runoff of 680 ± 140 mm a?1, only slightly more than the annual snow accumulation. Calving of icebergs from Svalbard glaciers currently contributes significantly to the freshwater flux and is estimated to be 4 ± 1 km3 a?1 or about 110 mm a?1.
Annals of Glaciology | 1990
Jon Ove Hagen; Olav Liestøl
Mass-balance investigations on glaciers in Svalbard at high latitudes (78 oN) show that the ice masses have been steadily decreasing during the period 195088. Detailed annual observations have been carried out on Bmggerbreen since 1966 and Lovenbreen since 1967. The mean specific net balances are --0.46 and --0.37 m year1 water equivalent respectively. Only one year had positive net balance in this period. The cumulative mass lost in the period is then more than 10% of the volume in 1967. Zero net balance would be obtained if the summer temperature was lowered about 1°C or if the winter precipitation increased about 50%. There is a strong correlation between the net mass balance and the height of the equilibrium-line altitude (ELA). Because of the high amount of superimposed ice (10-30% of winter balance) stake readings are necessary to find the ELA. There is no sign of climatic warming through increased melting. The trend analysis of the data from the last 20 years shows stable conditions with a slight increase of the winter balance. The net balance is then slightly increasing and thus less negative than 20 years ago.
Arctic, Antarctic, and Alpine Research | 2003
Jon Ove Hagen; Kjetil Melvold; Francis Pinglot; Julian A. Dowdeswell
Abstract The ice masses of Svalbard cover an area of ca. 36 600 km2, and are thus among the largest glaciated areas in the Arctic. Annual mass balance measurements have been carried out on several Svalbard glaciers over up to 30 yr. However, these glaciers extend over only 0.5% of the total ice-covered area. The measured mean net balance has been negative and no changing trend has been observed. On some glaciers and larger ice caps, the mean net balance has also been measured at different altitudes by detecting radioactive reference layers from nuclear fallouts in 1963 and 1986 in shallow ice cores. The net balance/altitude curves have been estimated for thirteen different regions in Svalbard, and combined with digital elevation models of all Svalbard ice masses used to calculate the net balance in each 100-m altitude interval. The net loss of mass through iceberg calving was estimated and appears to be an important component of the net mass loss from Svalbard ice masses. The overall total net balance is slightly negative, −4.5 ± 1 km3 yr−1, giving a specific net balance of ca. −120 ± 30 mm yr−1 over the archipelago. The contribution of ice caps and glaciers on Svalbard to global sea-level change is, therefore, close to 0.01 mm yr−1 as an average value over the last 30 years, which is less negative than former estimates.
Journal of Glaciology | 1991
Julian A. Dowdeswell; Gordon S. Hamilton; Jon Ove Hagen
Many glaciers in Svalbard and in other glacierized areas of the world are known to surge. However, the time series of observations required to assess the duration of fast motion is very restricted. Data on active-phase duration in Svalbard come from aerial photographs, satellite imagery, field surveys and airborne reconnaissance. Evidence on surge duration is available for eight Svalbard ice masses varying from 3 to 1250 km 2 . Worldwide, active-phase duration is recorded for less than 50 glaciers. Few observations are available on high polar ice masses. The duration of the active phase is significantly longer for Svalbard glaciers than for surge-type glaciers in other areas from which data are available. In Svalbard, the active phase may last from 3 to 10 years. By contrast, a surge duration of 1–2 years is more typical of ice masses in northwest North America, Iceland and the Pamirs. Ice velocities during the protracted active phase on Svalbard glaciers are considerably lower than those for many surge-type glaciers in these other regions. Mass is transferred down-glacier more slowly but over a considerably longer period. Svalbard surge-type glaciers do not exhibit the very abrupt termination of the active phase, over periods of a few days, observed for several Alaskan glaciers. The duration of the active phase in Svalbard is not dependent on parameters related to glacier size. The quiescent phase is also relatively long (50–500 years) for Svalbard ice masses. Detailed field monitoring of changing basal conditions through the surge cycle is required from surge-type glaciers in Svalbard in order to explain the significantly longer length of the active phase for glaciers in the archipelago, which may also typify other high polar ice masses. The finding that surge behaviour, in the form of active-phase duration, shows systematic differences between different regions and their environments has important implications for understanding the processes responsible for glacier surges.
Annals of Glaciology | 2007
Christopher Nuth; Jack Kohler; H.F. Aas; Ola Brandt; Jon Ove Hagen
Abstract This study uses older topographic maps made from high-oblique aerial photographs for glacier elevation change studies. We compare the 1936/38 topographic map series of Svalbard (Norwegian Polar Institute) to a modern digital elevation model from 1990. Both systematic and random components of elevation error are examined by analyzing non-glacier elevation difference points. The 1936/38 photographic aerial survey is examined to identify areas with poor data coverage over glaciers. Elevation changes are analyzed for seven regions in Svalbard (~5000 km2), where significant thinning was found at glacier fronts, and elevation increases in the upper parts of the accumulation areas. All regions experience volume losses and negative geodetic balances, although regional variability exists relating to both climate and topography. Many surges are apparent within the elevation change maps. Estimated volume change for the regions is –1.59±0.07km3 a–1 (ice equivalent) for a geodetic annual balance of –0.30ma–1w.e., and the glaciated area has decreased by 16% in the 54 year time interval. The 1936–90 data are compared to modern elevation change estimates in the southern regions, to show that the rate of thinning has increased dramatically since 1990.
Geophysical Research Letters | 1995
Julian A. Dowdeswell; Richard Hodgkins; A.-M. Nuttall; Jon Ove Hagen; G. S. Hamilton
The end of the Little Ice Age (LIA) in Svalbard (76–81°N), a climate-sensitive region at the northern extreme of strong poleward heat transfer, was marked by an abrupt increase in mean annual air temperature of up to 5°C around 1920. Glacier mass balance has been consistently negative since this time, and large cumulative net losses of mass have occurred at most glaciers. Energy-balance modelling confirms the sensitivity of Svalbard glaciers to climate change, predicting a negative shift in net mass balance of up to 0.8 m a−1 (water equivalent) per degree temperature rise. This climate-related shift in glacier mass balance has reduced the intensity of glacier surge activity in Svalbard. One glacier, known to have surged since the end of the LIA, has since failed to accumulate the mass required to re-initiate the surge cycle, and is also now cold at its base and incapable of rapid flow by basal sliding. Three overviews of the total number of actively-surging glaciers in Svalbard between 1936–90 show a decrease from 18 to 5. This is significant compared with the expected numbers of surges based on LIA conditions. Post-LIA climate change in Svalbard has therefore affected not only glacier extent, but also ice dynamics. This is trend will probably continue given CO2-induced climate-warming.
Hydrological Processes | 1998
Andy Hodson; Angela M. Gurnell; Martyn Tranter; Jim Bogen; Jon Ove Hagen; Michael J. Clark
Observations of suspended sediment concentration and discharge at two sites on the proglacial river network draining from a predominantly cold-based, High-Arctic glacier (Austre Broggerbreen) are described. Analysis of these observations illustrates: (i) the relatively low suspended sediment yield from this basin in comparison with many other glacier basins reported in the open literature; (ii) sustained and possibly increasing availability of suspended sediment to the fluvial system as the ablation season progresses; and (iii) the role of the proglacial sandur as both a sediment source and sink. Field observations coupled with the results of the data analysis are used to make inferences concerning the changing nature and relative importance of sediment sources within the basin.