Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jon White is active.

Publication


Featured researches published by Jon White.


European Heart Journal | 2015

Mendelian randomization of blood lipids for coronary heart disease.

Michael V. Holmes; Folkert W. Asselbergs; Tom Palmer; Fotios Drenos; Matthew B. Lanktree; Christopher P. Nelson; Caroline Dale; Sandosh Padmanabhan; Chris Finan; Daniel I. Swerdlow; Vinicius Tragante; Erik P A Van Iperen; Suthesh Sivapalaratnam; Sonia Shah; Clara C. Elbers; Tina Shah; Jorgen Engmann; Claudia Giambartolomei; Jon White; Delilah Zabaneh; Reecha Sofat; Stela McLachlan; Pieter A. Doevendans; Anthony J. Balmforth; Alistair S. Hall; Kari E. North; Berta Almoguera; Ron C. Hoogeveen; Mary Cushman; Myriam Fornage

Aims To investigate the causal role of high-density lipoprotein cholesterol (HDL-C) and triglycerides in coronary heart disease (CHD) using multiple instrumental variables for Mendelian randomization. Methods and results We developed weighted allele scores based on single nucleotide polymorphisms (SNPs) with established associations with HDL-C, triglycerides, and low-density lipoprotein cholesterol (LDL-C). For each trait, we constructed two scores. The first was unrestricted, including all independent SNPs associated with the lipid trait identified from a prior meta-analysis (threshold P < 2 × 10−6); and the second a restricted score, filtered to remove any SNPs also associated with either of the other two lipid traits at P ≤ 0.01. Mendelian randomization meta-analyses were conducted in 17 studies including 62,199 participants and 12,099 CHD events. Both the unrestricted and restricted allele scores for LDL-C (42 and 19 SNPs, respectively) associated with CHD. For HDL-C, the unrestricted allele score (48 SNPs) was associated with CHD (OR: 0.53; 95% CI: 0.40, 0.70), per 1 mmol/L higher HDL-C, but neither the restricted allele score (19 SNPs; OR: 0.91; 95% CI: 0.42, 1.98) nor the unrestricted HDL-C allele score adjusted for triglycerides, LDL-C, or statin use (OR: 0.81; 95% CI: 0.44, 1.46) showed a robust association. For triglycerides, the unrestricted allele score (67 SNPs) and the restricted allele score (27 SNPs) were both associated with CHD (OR: 1.62; 95% CI: 1.24, 2.11 and 1.61; 95% CI: 1.00, 2.59, respectively) per 1-log unit increment. However, the unrestricted triglyceride score adjusted for HDL-C, LDL-C, and statin use gave an OR for CHD of 1.01 (95% CI: 0.59, 1.75). Conclusion The genetic findings support a causal effect of triglycerides on CHD risk, but a causal role for HDL-C, though possible, remains less certain.


JAMA Cardiology | 2016

Association of Lipid Fractions With Risks for Coronary Artery Disease and Diabetes.

Jon White; Daniel I. Swerdlow; David Preiss; Zammy Fairhurst-Hunter; Brendan J. Keating; Folkert W. Asselbergs; Naveed Sattar; Steve E. Humphries; Aroon D. Hingorani; Michael V. Holmes

IMPORTANCE Low-density lipoprotein cholesterol (LDL-C) is causally related to coronary artery disease (CAD), but the relevance of high-density lipoprotein cholesterol (HDL-C) and triglycerides (TGs) is uncertain. Lowering of LDL-C levels by statin therapy modestly increases the risk of type 2 diabetes, but it is unknown whether this effect is specific to statins. OBJECTIVE To investigate the associations of 3 routinely measured lipid fractions with CAD and diabetes through mendelian randomization (MR) using conventional MR and making use of newer approaches, such as multivariate MR and MR-Egger, that address the pleiotropy of genetic instruments where relevant. DESIGN, SETTING, AND PARTICIPANTS Published data from genome-wide association studies were used to construct genetic instruments and then applied to investigate associations between lipid fractions and the risk of CAD and diabetes using MR approaches that took into account pleiotropy of genetic instruments. The study was conducted from March 12 to December 31, 2015. MAIN OUTCOMES AND MEASURES Coronary artery disease and diabetes. RESULTS Genetic instruments composed of 130 single-nucleotide polymorphisms (SNPs) were used for LDL-C (explaining 7.9% of its variance), 140 SNPs for HDL-C (6.6% of variance), and 140 SNPs for TGs (5.9% of variance). A 1-SD genetically instrumented elevation in LDL-C levels (equivalent to 38 mg/dL) and TG levels (equivalent to 89 mg/dL) was associated with higher CAD risk; odds ratios (ORs) were 1.68 (95% CI, 1.51-1.87) for LDL-C and 1.28 (95% CI, 1.13-1.45) for TGs. The corresponding OR for HDL-C (equivalent to a 16-mg/dL increase) was 0.95 (95% CI, 0.85-1.06). All 3 lipid traits were associated with a lower risk of type 2 diabetes. The ORs were 0.79 (95% CI, 0.71-0.88) for LDL-C and 0.83 (95% CI, 0.76-0.90) for HDL-C per 1-SD elevation. For TG, the MR estimates for diabetes were inconsistent, with MR-Egger giving an OR of 0.83 (95%CI, 0.72-0.95) per 1-SD elevation. CONCLUSIONS AND RELEVANCE Routinely measured lipid fractions exhibit contrasting associations with the risk of CAD and diabetes. Increased LDL-C, HDL-C, and possibly TG levels are associated with a lower risk of diabetes. This information will be relevant to the design of clinical trials of lipid-modifying agents, which should carefully monitor participants for dysglycemia and the incidence of diabetes.


Diabetes | 2015

Sixty-Five Common Genetic Variants and Prediction of Type 2 Diabetes

Philippa J. Talmud; Jackie A. Cooper; Richard Morris; Frank Dudbridge; Tina Shah; Jorgen Engmann; Caroline Dale; Jon White; Stela McLachlan; Delilah Zabaneh; Andrew Wong; Ken K. Ong; Tom R. Gaunt; Michael V. Holmes; Debbie A. Lawlor; Marcus Richards; Rebecca Hardy; Diana Kuh; Nicholas J. Wareham; Claudia Langenberg; Yoav Ben-Shlomo; S. Goya Wannamethee; Mark W. J. Strachan; Meena Kumari; John C. Whittaker; Fotios Drenos; Mika Kivimäki; Aroon D. Hingorani; Jacqueline F. Price; Steve E. Humphries

We developed a 65 type 2 diabetes (T2D) variant–weighted gene score to examine the impact on T2D risk assessment in a U.K.-based consortium of prospective studies, with subjects initially free from T2D (N = 13,294; 37.3% women; mean age 58.5 [38–99] years). We compared the performance of the gene score with the phenotypically derived Framingham Offspring Study T2D risk model and then the two in combination. Over the median 10 years of follow-up, 804 participants developed T2D. The odds ratio for T2D (top vs. bottom quintiles of gene score) was 2.70 (95% CI 2.12–3.43). With a 10% false-positive rate, the genetic score alone detected 19.9% incident cases, the Framingham risk model 30.7%, and together 37.3%. The respective area under the receiver operator characteristic curves were 0.60 (95% CI 0.58–0.62), 0.75 (95% CI 0.73 to 0.77), and 0.76 (95% CI 0.75 to 0.78). The combined risk score net reclassification improvement (NRI) was 8.1% (5.0 to 11.2; P = 3.31 × 10−7). While BMI stratification into tertiles influenced the NRI (BMI ≤24.5 kg/m2, 27.6% [95% CI 17.7–37.5], P = 4.82 × 10−8; 24.5–27.5 kg/m2, 11.6% [95% CI 5.8–17.4], P = 9.88 × 10−5; >27.5 kg/m2, 2.6% [95% CI −1.4 to 6.6], P = 0.20), age categories did not. The addition of the gene score to a phenotypic risk model leads to a potentially clinically important improvement in discrimination of incident T2D.


The Lancet Diabetes & Endocrinology | 2016

Plasma urate concentration and risk of coronary heart disease: a Mendelian randomisation analysis

Jon White; Reecha Sofat; Gibran Hemani; Tina Shah; Jorgen Engmann; Caroline Dale; Sonia Shah; Felix A. Kruger; Claudia Giambartolomei; Daniel I. Swerdlow; Tom Palmer; Stela McLachlan; Claudia Langenberg; Delilah Zabaneh; Ruth C. Lovering; Alana Cavadino; Barbara J. Jefferis; Chris Finan; Andrew Wong; Antoinette Amuzu; Ken K. Ong; Tom R. Gaunt; Helen R. Warren; Teri-Louise Davies; Fotios Drenos; Jackie A. Cooper; Shah Ebrahim; Debbie A. Lawlor; Philippa J. Talmud; Steve E. Humphries

Summary Background Increased circulating plasma urate concentration is associated with an increased risk of coronary heart disease, but the extent of any causative effect of urate on risk of coronary heart disease is still unclear. In this study, we aimed to clarify any causal role of urate on coronary heart disease risk using Mendelian randomisation analysis. Methods We first did a fixed-effects meta-analysis of the observational association of plasma urate and risk of coronary heart disease. We then used a conventional Mendelian randomisation approach to investigate the causal relevance using a genetic instrument based on 31 urate-associated single nucleotide polymorphisms (SNPs). To account for potential pleiotropic associations of certain SNPs with risk factors other than urate, we additionally did both a multivariable Mendelian randomisation analysis, in which the genetic associations of SNPs with systolic and diastolic blood pressure, HDL cholesterol, and triglycerides were included as covariates, and an Egger Mendelian randomisation (MR-Egger) analysis to estimate a causal effect accounting for unmeasured pleiotropy. Findings In the meta-analysis of 17 prospective observational studies (166 486 individuals; 9784 coronary heart disease events) a 1 SD higher urate concentration was associated with an odds ratio (OR) for coronary heart disease of 1·07 (95% CI 1·04–1·10). The corresponding OR estimates from the conventional, multivariable adjusted, and Egger Mendelian randomisation analysis (58 studies; 198 598 individuals; 65 877 events) were 1·18 (95% CI 1·08–1·29), 1·10 (1·00–1·22), and 1·05 (0·92–1·20), respectively, per 1 SD increment in plasma urate. Interpretation Conventional and multivariate Mendelian randomisation analysis implicates a causal role for urate in the development of coronary heart disease, but these estimates might be inflated by hidden pleiotropy. Egger Mendelian randomisation analysis, which accounts for pleiotropy but has less statistical power, suggests there might be no causal effect. These results might help investigators to determine the priority of trials of urate lowering for the prevention of coronary heart disease compared with other potential interventions. Funding UK National Institute for Health Research, British Heart Foundation, and UK Medical Research Council.


International Journal of Epidemiology | 2016

Adult height, coronary heart disease and stroke: a multi-locus Mendelian randomization meta-analysis

Eveline Nüesch; Caroline Dale; Tom Palmer; Jon White; Brendan J. Keating; E P van Iperen; Anuj Goel; Sandosh Padmanabhan; Folkert W. Asselbergs; W. M. M. Verschuren; Cisca Wijmenga; Y. T. van der Schouw; N. C. Onland-Moret; Leslie A. Lange; Gerald K. Hovingh; Suthesh Sivapalaratnam; Richard Morris; Peter H. Whincup; G S Wannamethe; Tom R. Gaunt; Shah Ebrahim; Laura Steel; Nikhil Nair; Alex P. Reiner; Charles Kooperberg; James F. Wilson; Jennifer L. Bolton; Stela McLachlan; Jacqueline F. Price; Mark W. J. Strachan

Abstract Background: We investigated causal effect of completed growth, measured by adult height, on coronary heart disease (CHD), stroke and cardiovascular traits, using instrumental variable (IV) Mendelian randomization meta-analysis. Methods: We developed an allele score based on 69 single nucleotide polymorphisms (SNPs) associated with adult height, identified by the IBCCardioChip, and used it for IV analysis against cardiovascular risk factors and events in 21 studies and 60 028 participants. IV analysis on CHD was supplemented by summary data from 180 height-SNPs from the GIANT consortium and their corresponding CHD estimates derived from CARDIoGRAMplusC4D. Results: IV estimates from IBCCardioChip and GIANT-CARDIoGRAMplusC4D showed that a 6.5-cm increase in height reduced the odds of CHD by 10% [odds ratios 0.90; 95% confidence intervals (CIs): 0.78 to 1.03 and 0.85 to 0.95, respectively],which agrees with the estimate from the Emerging Risk Factors Collaboration (hazard ratio 0.93; 95% CI: 0.91 to 0.94). IV analysis revealed no association with stroke (odds ratio 0.97; 95% CI: 0.79 to 1.19). IV analysis showed that a 6.5-cm increase in height resulted in lower levels of body mass index (P < 0.001), triglycerides (P < 0.001), non high-density (non-HDL) cholesterol (P < 0.001), C-reactive protein (P = 0.042), and systolic blood pressure (P = 0.064) and higher levels of forced expiratory volume in 1 s and forced vital capacity (P < 0.001 for both). Conclusions: Taller individuals have a lower risk of CHD with potential explanations being that taller people have a better lung function and lower levels of body mass index, cholesterol and blood pressure.


Circulation | 2017

Causal Associations of Adiposity and Body Fat Distribution with Coronary Heart Disease, Stroke Subtypes, and Type 2 Diabetes Mellitus: A Mendelian Randomization Analysis

Caroline Dale; Ghazaleh Fatemifar; Tom Palmer; Jon White; David Prieto-Merino; Delilah Zabaneh; Engmann Jel.; T Shah; Andrew Wong; Helen R. Warren; Stela McLachlan; Stella Trompet; Max Moldovan; Richard Morris; Reecha Sofat; Meena Kumari; Elina Hyppönen; Barbara J. Jefferis; Tom R. Gaunt; Yoav Ben-Shlomo; Ang Zhou; Aleksandra Gentry-Maharaj; Andy Ryan; Renée de Mutsert; Raymond Noordam; Mark J. Caulfield; J.W. Jukema; Bradford B. Worrall; Patricia B. Munroe; Usha Menon

Background: The implications of different adiposity measures on cardiovascular disease etiology remain unclear. In this article, we quantify and contrast causal associations of central adiposity (waist-to-hip ratio adjusted for body mass index [WHRadjBMI]) and general adiposity (body mass index [BMI]) with cardiometabolic disease. Methods: Ninety-seven independent single-nucleotide polymorphisms for BMI and 49 single-nucleotide polymorphisms for WHRadjBMI were used to conduct Mendelian randomization analyses in 14 prospective studies supplemented with coronary heart disease (CHD) data from CARDIoGRAMplusC4D (Coronary Artery Disease Genome-wide Replication and Meta-analysis [CARDIoGRAM] plus The Coronary Artery Disease [C4D] Genetics; combined total 66 842 cases), stroke from METASTROKE (12 389 ischemic stroke cases), type 2 diabetes mellitus from DIAGRAM (Diabetes Genetics Replication and Meta-analysis; 34 840 cases), and lipids from GLGC (Global Lipids Genetic Consortium; 213 500 participants) consortia. Primary outcomes were CHD, type 2 diabetes mellitus, and major stroke subtypes; secondary analyses included 18 cardiometabolic traits. Results: Each one standard deviation (SD) higher WHRadjBMI (1 SD≈0.08 U) associated with a 48% excess risk of CHD (odds ratio [OR] for CHD, 1.48; 95% confidence interval [CI], 1.28–1.71), similar to findings for BMI (1 SD≈4.6 kg/m2; OR for CHD, 1.36; 95% CI, 1.22–1.52). Only WHRadjBMI increased risk of ischemic stroke (OR, 1.32; 95% CI, 1.03–1.70). For type 2 diabetes mellitus, both measures had large effects: OR, 1.82 (95% CI, 1.38–2.42) and OR, 1.98 (95% CI, 1.41–2.78) per 1 SD higher WHRadjBMI and BMI, respectively. Both WHRadjBMI and BMI were associated with higher left ventricular hypertrophy, glycemic traits, interleukin 6, and circulating lipids. WHRadjBMI was also associated with higher carotid intima-media thickness (39%; 95% CI, 9%–77% per 1 SD). Conclusions: Both general and central adiposity have causal effects on CHD and type 2 diabetes mellitus. Central adiposity may have a stronger effect on stroke risk. Future estimates of the burden of adiposity on health should include measures of central and general adiposity.


International Journal of Epidemiology | 2016

Selecting instruments for Mendelian randomization in the wake of genome-wide association studies

Daniel I. Swerdlow; Karoline B. Kuchenbaecker; Sonia Shah; Reecha Sofat; Michael V. Holmes; Jon White; Jennifer Mindell; Mika Kivimäki; Eric Brunner; John C. Whittaker; Juan P. Casas; Aroon D. Hingorani

Mendelian randomization (MR) studies typically assess the pathogenic relevance of environmental exposures or disease biomarkers, using genetic variants that instrument these exposures. The approach is gaining popularity—our systematic review reveals a greater than 10-fold increase in MR studies published between 2004 and 2015. When the MR paradigm was first proposed, few biomarker- or exposure-related genetic variants were known, most having been identified by candidate gene studies. However, genome-wide association studies (GWAS) are now providing a rich source of potential instruments for MR analysis. Many early reviews covering the concept, applications and analytical aspects of the MR technique preceded the surge in GWAS, and thus the question of how best to select instruments for MR studies from the now extensive pool of available variants has received insufficient attention. Here we focus on the most common category of MR studies—those concerning disease biomarkers. We consider how the selection of instruments for MR analysis from GWAS requires consideration of: the assumptions underlying the MR approach; the biology of the biomarker; the genome-wide distribution, frequency and effect size of biomarker-associated variants (the genetic architecture); and the specificity of the genetic associations. Based on this, we develop guidance that may help investigators to plan and readers interpret MR studies.


Circulation Research | 2016

Role of Adiponectin in Coronary Heart Disease Risk: A Mendelian Randomization Study

Maria Carolina Borges; Debbie A. Lawlor; Cesar de Oliveira; Jon White; Bernardo Lessa Horta; Aluísio J. D. Barros

Supplemental Digital Content is available in the text.


PLOS ONE | 2013

Population Genomics of Cardiometabolic Traits: Design of the University College London-London School of Hygiene and Tropical Medicine-Edinburgh-Bristol (UCLEB) Consortium

Tina Shah; Jorgen Engmann; Caroline Dale; Sonia Shah; Jon White; Claudia Giambartolomei; Stela McLachlan; Delilah Zabaneh; Alana Cavadino; Chris Finan; Andrew K. C. Wong; Antoinette Amuzu; Ken K. Ong; Tom R. Gaunt; Michael V. Holmes; Helen R. Warren; Teri-Louise Davies; Fotios Drenos; Jackie A. Cooper; Reecha Sofat; Mark J. Caulfield; Shah Ebrahim; Debbie A. Lawlor; Philippa J. Talmud; Steve E. Humphries; Christine Power; Elina Hyppönen; Marcus Richards; Rebecca Hardy; Diana Kuh

Substantial advances have been made in identifying common genetic variants influencing cardiometabolic traits and disease outcomes through genome wide association studies. Nevertheless, gaps in knowledge remain and new questions have arisen regarding the population relevance, mechanisms, and applications for healthcare. Using a new high-resolution custom single nucleotide polymorphism (SNP) array (Metabochip) incorporating dense coverage of genomic regions linked to cardiometabolic disease, the University College-London School-Edinburgh-Bristol (UCLEB) consortium of highly-phenotyped population-based prospective studies, aims to: (1) fine map functionally relevant SNPs; (2) precisely estimate individual absolute and population attributable risks based on individual SNPs and their combination; (3) investigate mechanisms leading to altered risk factor profiles and CVD events; and (4) use Mendelian randomisation to undertake studies of the causal role in CVD of a range of cardiovascular biomarkers to inform public health policy and help develop new preventative therapies.


PLOS ONE | 2016

Identification of the Functional Variant(s) that Explain the Low-Density Lipoprotein Receptor (LDLR) GWAS SNP rs6511720 Association with Lower LDL-C and Risk of CHD

Rh Fairoozy; Jon White; Jutta Palmen; Anastasia Z. Kalea; Steve E. Humphries

Background The Low-Density Lipoprotein Receptor (LDLR) SNP rs6511720 (G>T), located in intron-1 of the gene, has been identified in genome-wide association studies (GWAS) as being associated with lower plasma levels of LDL-C and a lower risk of coronary heart disease (CHD). Whether or not rs6511720 is itself functional or a marker for a functional variant elsewhere in the gene is not known. Methods The association of LDLR SNP rs6511720 with incidence of CHD and levels of LDL-C was determined by reference to CARDIoGRAM, C4D and Global lipids genetics consortium (GLGC) data. SNP annotation databases were used to identify possible SNP function and prioritization. Luciferase reporter assays in the liver cell line Huh7 were used to measure the effect of variant genotype on gene expression. Electrophoretic Mobility Shift Assays (EMSAs) were used to identify the Transcription Factors (TFs) involved in gene expression regulation. Results The phenotype-genotype analysis showed that the rs6511720 minor allele is associated with lower level of LDL-C [beta = -0.2209, p = 3.85 x10-262], and lower risk of CHD [log (OR) = 0.1155, p = 1.04 x10-7]. Rs6511720 is in complete linkage. Rs6511720 is in complete linkage disequilibrium (LD) with three intron-1 SNPs (rs141787760, rs60173709, rs57217136). Luciferase reporter assays in Huh7 cells showed that the rare alleles of both rs6511720 and rs57217136 caused a significant increase in LDLR expression compared to the common alleles (+29% and +24%, respectively). Multiplex Competitor-EMSAs (MC-EMSA) identified that the transcription factor serum response element (SRE) binds to rs6511720, while retinoic acid receptor (RAR) and signal transducer and activator of transcription 1 (STAT1) bind to rs57217136. Conclusion Both LDLR rs6511720 and rs57217136 are functional variants. Both these minor alleles create enhancer-binding protein sites for TFs and may contribute to increased LDLR expression, which is consequently associated with reduced LDL-C levels and 12% lower CHD risk.

Collaboration


Dive into the Jon White's collaboration.

Top Co-Authors

Avatar

Jian Chen

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Lopa Mishra

George Washington University

View shared research outputs
Top Co-Authors

Avatar

Bibhuti Mishra

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Wilma Jogunoori

George Washington University

View shared research outputs
Top Co-Authors

Avatar

Asif Rashid

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Rehan Akbani

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shulin Li

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge