Jonas Borch
University of Southern Denmark
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jonas Borch.
Molecular Cell | 2003
Jakob Møller-Jensen; Jonas Borch; Mette Dam; Rasmus Bugge Jensen; Peter Roepstorff; Kenn Gerdes
Bacterial DNA segregation takes place in an active and ordered fashion. In the case of Escherichia coli plasmid R1, the partitioning system (par) separates paired plasmid copies and moves them to opposite cell poles. Here we address the mechanism by which the three components of the R1 par system act together to generate the force required for plasmid movement during segregation. ParR protein binds cooperatively to the centromeric parC DNA region, thereby forming a complex that interacts with the filament-forming actin-like ParM protein in an ATP-dependent manner, suggesting that plasmid movement is powered by insertional polymerization of ParM. Consistently, we find that segregating plasmids are positioned at the ends of extending ParM filaments. Thus, the process of R1 plasmid segregation in E. coli appears to be mechanistically analogous to the actin-based motility operating in eukaryotic cells. In addition, we find evidence suggesting that plasmid pairing is required for ParM polymerization.
Molecular Microbiology | 2008
Martin Overgaard; Jonas Borch; Kenn Gerdes
Prokaryotic toxin–antitoxin (TA) loci consist of two genes in an operon that encodes a metabolically stable toxin and an unstable antitoxin. The antitoxin neutralizes its cognate toxin by forming a tight complex with it. In all cases known, the antitoxin autoregulates TA operon transcription by binding to one or more operators in the promoter region while the toxin functions as a co‐repressor of transcription. Interestingly, the toxin can also stimulate TA operon transcription. Here we analyse mechanistic aspects of how RelE of Escherichia coli can function both as a co‐repressor and as a derepressor of relBE transcription. When RelB was in excess to RelE, two trimeric RelB2•RelE complexes bound cooperatively to two adjacent operator sites in the relBE promoter region and repressed transcription. In contrast, RelE in excess stimulated relBE transcription and released the RelB2•RelE complex from operator DNA. A mutational analysis of the operator sites showed that RelE in excess counteracted cooperative binding of the RelB2•RelE complexes to the operator sites. Thus, RelE controls relBE transcription by conditional cooperativity.
Biological Chemistry | 2009
Jonas Borch; Thomas Hamann
Abstract A major challenge in the research on membrane-anchored and integral membrane protein complexes is to obtain these in a functionally active, water-soluble, and monodisperse form. This requires the incorporation of the membrane proteins into a native-like membrane or detergent micelle that mimics the properties of the original biological membrane. However, solubilization in detergents or reconstitution in liposomes or supported monolayers sometimes suffers from loss of activity and problematic analyses due to heterogeneity and aggregation. A developing technology termed nanodiscs exploits discoidal phospholipid bilayers encircled by a stabilizing amphipatic helical membrane scaffold protein to reconstitute membranes with integral proteins. After reconstitution, the membrane nanodisc is soluble, stable, and monodisperse. In the present review, we outline the biological inspiration for nanodiscs as discoidal high-density lipoproteins, the assembly and handling of nanodiscs, and finally their diverse biochemical applications. In our view, major advantages of nanodisc technology for integral membrane proteins is homogeneity, control of oligomerization state, access to both sides of the membrane, and control of lipids in the local membrane environment of the integral protein.
Journal of Molecular Biology | 2009
Martin Overgaard; Jonas Borch; Kenn Gerdes
RelB, the ribbon–helix–helix (RHH) repressor encoded by the relBE toxin–antitoxin locus of Escherichia coli, interacts with RelE and thereby counteracts the mRNA cleavage activity of RelE. In addition, RelB dimers repress the strong relBE promoter and this repression by RelB is enhanced by RelE; that is, RelE functions as a transcriptional co-repressor. RelB is a Lon protease substrate, and Lon is required both for activation of relBE transcription and for activation of the mRNA cleavage activity of RelE. Here we characterize the molecular interactions important for transcriptional control of the relBE model operon. Using an in vivo screen for relB mutants, we identified multiple nucleotide changes that map to important amino acid positions within the DNA-binding domain formed by the N-terminal RHH motif of RelB. Analysis of DNA binding of a subset of these mutant RHH proteins by gel-shift assays, transcriptional fusion assays and a structure model of RelB–DNA revealed amino acid residues making crucial DNA–backbone contacts within the operator (relO) DNA. Mutational and footprinting analyses of relO showed that RelB dimers bind on the same face of the DNA helix and that the RHH motif recognizes four 6-bp repeats within the bipartite binding site. The spacing between each half-site was found to be essential for cooperative interactions between adjacently bound RelB dimers stabilized by the co-repressor RelE. Kinetic and stoichiometric measurements of the interaction between RelB and RelE confirmed that the proteins form a high-affinity complex with a 2:1 stoichiometry. Lon degraded RelB in vitro and degradation was inhibited by RelE, consistent with the proposal that RelE protects RelB from proteolysis by Lon in vivo.
Nature Communications | 2011
Niels Bjerg Jensen; Mika Zagrobelny; Karin Hjernø; Carl Erik Olsen; Jens Houghton-Larsen; Jonas Borch; Birger Lindberg Møller; Søren Bak
For more than 420 million years, plants, insects and their predators have co-evolved based on a chemical arms race including deployment of refined chemical defence systems by each player. Cyanogenic glucosides are produced by numerous plants and by some specialized insects and serve an important role as defence compounds in these intimate interactions. Burnet moth larvae are able to sequester cyanogenic glucosides from their food plant as well as to carry out de novo biosynthesis. Here we show that three genes (CYP405A2, CYP332A3 and UGT33A1) encode the entire biosynthetic pathway of cyanogenic glucosides in the Burnet moth Zygaena filipendulae. In both plants and insects, convergent evolution has led to two multifunctional P450 enzymes each catalysing unusual reactions and a glucosyl-transferase acting in sequence to catalyse cyanogenic glucoside formation. Thus, plants and insects have independently found a way to package a cyanide time bomb to fend off herbivores and predators.
Analytical Chemistry | 2008
Jonas Borch; Federico Torta; Stephen G. Sligar; Peter Roepstorff
Nanodiscs are self-assembled soluble discoidal phospholipids bilayers encirculated by an amphipathic protein that together provide a functional stabilized membrane disk for the incorporation of membrane-bound and membrane-associated molecules. The scope of the present work is to investigate how nanodiscs and their incorporated membrane receptors can be attached to surface plasmon resonance sensorchips and used to measure the kinetics of the interaction between soluble molecules and membrane receptors inserted in the bilayer of nanodiscs. Cholera toxin and its glycolipid receptor G(M1) constitute a system that can be considered a paradigm for interactions of soluble proteins with membrane receptors. In this work, we have investigated different technologies for capturing nanodiscs containing the glycolipid receptor G(M1) in lipid bilayers, enabling measurements of binding of its soluble interaction partner cholera toxin B subunit to the receptor with the sensorchip-based surface plasmon resonance (SPR) technology. The measured stoichiometric and kinetic values of the interaction are in agreement with those reported by previous studies, thus providing proof-of-principle that nanodiscs can be employed for kinetic SPR studies.
Science | 2016
Tomas Laursen; Jonas Borch; Camilla S. Knudsen; Krutika Bavishi; Federico Torta; Helle Juel Martens; Daniele Silvestro; Nikos S. Hatzakis; Markus R. Wenk; Timothy R. Dafforn; Carl Erik Olsen; Mohammed Saddik Motawia; Björn Hamberger; Birger Lindberg Møller; Jean-Etienne Bassard
Metabolite channeling by a dynamic metabolon The specialized metabolite dhurrin breaks down into cyanide when plant cell walls have been chewed, deterring insect pests. Laursen et al. found that the enzymes that synthesize dhurrin in sorghum assemble as a metabolon in lipid membranes (see the Perspective by Dsatmaichi and Facchini). The dynamic nature of metabolon assembly and disassembly provides dhurrin on an as-needed basis. Membrane-anchored cytochrome P450s cooperated with a soluble glucosyltransferase to channel intermediates toward efficient dhurrin production. Science, this issue p. 890; see also p. 829 Enzymes that synthesize a specialized metabolite congregate and disperse on an as-needed basis in the lipid membrane. Metabolic highways may be orchestrated by the assembly of sequential enzymes into protein complexes, or metabolons, to facilitate efficient channeling of intermediates and to prevent undesired metabolic cross-talk while maintaining metabolic flexibility. Here we report the isolation of the dynamic metabolon that catalyzes the formation of the cyanogenic glucoside dhurrin, a defense compound produced in sorghum plants. The metabolon was reconstituted in liposomes, which demonstrated the importance of membrane surface charge and the presence of the glucosyltransferase for metabolic channeling. We used in planta fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy to study functional and structural characteristics of the metabolon. Understanding the regulation of biosynthetic metabolons offers opportunities to optimize synthetic biology approaches for efficient production of high-value products in heterologous hosts.
International Journal of Pharmaceutics | 2011
Lars Joergensen; Beate Klösgen; Adam Cohen Simonsen; Jonas Borch; Ellen Hagesaether
The object of this study was to assess the mucoadhesion of the three main commercially available types of pectin by atomic force microscopy (AFM) and surface Plasmon resonance (SPR). Polyacrylic acid and polyvinyl pyrrolidone were used as positive and negative control, respectively. Image analysis of the AFM scans revealed a significant change of roughness parameters when low-ester pectin was introduced to mica supported bovine submaxillarymucin, indicating a high mucoadhesion for this type of pectin. Only minor changes were observed with high-ester and amidated pectin. The same ranking order of adhesion affinity was confirmed by SPR. In conclusion, a high specific mucin interaction of pectin with a high charge density was demonstrated directly on a molecular scale without interference from the viscoelastic properties or the intra-molecular interactions between the polymer chains themselves, using two independent methods.
Plant Physiology | 2012
Raquel Sánchez-Pérez; Fara Sáez Belmonte; Jonas Borch; Federico Dicenta; Birger Lindberg Møller; Kirsten Jørgensen
Amygdalin is a cyanogenic diglucoside and constitutes the bitter component in bitter almond (Prunus dulcis). Amygdalin concentration increases in the course of fruit formation. The monoglucoside prunasin is the precursor of amygdalin. Prunasin may be degraded to hydrogen cyanide, glucose, and benzaldehyde by the action of the β-glucosidase prunasin hydrolase (PH) and mandelonitirile lyase or be glucosylated to form amygdalin. The tissue and cellular localization of PHs was determined during fruit development in two sweet and two bitter almond cultivars using a specific antibody toward PHs. Confocal studies on sections of tegument, nucellus, endosperm, and embryo showed that the localization of the PH proteins is dependent on the stage of fruit development, shifting between apoplast and symplast in opposite patterns in sweet and bitter cultivars. Two different PH genes, Ph691 and Ph692, have been identified in a sweet and a bitter almond cultivar. Both cDNAs are 86% identical on the nucleotide level, and their encoded proteins are 79% identical to each other. In addition, Ph691 and Ph692 display 92% and 86% nucleotide identity to Ph1 from black cherry (Prunus serotina). Both proteins were predicted to contain an amino-terminal signal peptide, with the size of 26 amino acid residues for PH691 and 22 residues for PH692. The PH activity and the localization of the respective proteins in vivo differ between cultivars. This implies that there might be different concentrations of prunasin available in the seed for amygdalin synthesis and that these differences may determine whether the mature almond develops into bitter or sweet.
Journal of Biological Chemistry | 2007
Simon Ringgaard; Gitte Ebersbach; Jonas Borch; Kenn Gerdes
The double par locus of Escherichia coli virulence factor pB171 consists of two adjacent and oppositely oriented par loci of different types, called par1 and par2. par1 encodes an actin ATPase (ParM), and par2 encodes an oscillating, MinD-like ATPase (ParA). The par loci share a central cis-acting region of ≈200 bp, called parC1, located between the two par loci. An additional cis-acting region, parC2, is located downstream of the parAB operon of par2. Here we show that ParR of par1 and ParB of par2 bind cooperatively to unrelated sets of direct repeats in parC1 to form the cognate partition and promoter repression complexes. Surprisingly, ParB repressed transcription of the noncognate par operon, indicating cross-talk and possibly epistasis between the two systems. The par promoters, P1 and P2, affected each other negatively. The DNA binding activities of ParR and ParB correlated well with the observed transcriptional regulation of the par operons in vivo and in vitro. Integration host factor (IHF) was identified as a novel factor involved in par2-mediated plasmid partitioning.