Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Roepstorff is active.

Publication


Featured researches published by Peter Roepstorff.


Molecular & Cellular Proteomics | 2005

Highly Selective Enrichment of Phosphorylated Peptides from Peptide Mixtures Using Titanium Dioxide Microcolumns

Martin R. Larsen; Tine E. Thingholm; Ole Nørregaard Jensen; Peter Roepstorff; Thomas J. D. Jørgensen

Reversible phosphorylation of proteins regulates the majority of all cellular processes, e.g. proliferation, differentiation, and apoptosis. A fundamental understanding of these biological processes at the molecular level requires characterization of the phosphorylated proteins. Phosphorylation is often substoichiometric, and an enrichment procedure of phosphorylated peptides derived from phosphorylated proteins is a necessary prerequisite for the characterization of such peptides by modern mass spectrometric methods. We report a highly selective enrichment procedure for phosphorylated peptides based on TiO2microcolumns and peptide loading in 2,5-dihydroxybenzoic acid (DHB). The effect of DHB was a very efficient reduction in the binding of nonphosphorylated peptides to TiO2 while retaining its high binding affinity for phosphorylated peptides. Thus, inclusion of DHB dramatically increased the selectivity of the enrichment of phosphorylated peptides by TiO2. We demonstrated that this new procedure was more selective for binding phosphorylated peptides than IMAC using MALDI mass spectrometry. In addition, we showed that LC-ESI-MSMS was biased toward monophosphorylated peptides, whereas MALDI MS was not. Other substituted aromatic carboxylic acids were also capable of specifically reducing binding of nonphosphorylated peptides, whereas phosphoric acid reduced binding of both phosphorylated and nonphosphorylated peptides. A putative mechanism for this intriguing effect is presented.


Rapid Communications in Mass Spectrometry | 2000

Quantitation of peptides and proteins by matrix- assisted laser desorption/ionization mass spectrometry using 18 O-labeled internal standards

Olga A. Mirgorodskaya; Yuri P. Kozmin; Mikhail I. Titov; Roman Körner; Carsten P. Sönksen; Peter Roepstorff

A method for quantitating proteins and peptides in the low picomole and sub-picomole range has been developed using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) with internal (18)O-labeled standards. A simple procedure is proposed to produce such internal standards for the tested sample by enzymatic hydrolysis of the same sample (with known concentration) in (18)O-water. A mathematical algorithm was developed which uses the isotopic patterns of the substance, the internal standard, and the substance/internal standard mixture for accurate quantitation of the substance. A great advantages of the proposed method is the absence of molecular weight limitation for the protein quantitation and the possibility of quantitation without previous fractionation of proteins and peptides. Using this strategy, the peptide angiotensinogen and two proteins, RNase and its protein inhibitor, were quantified by MALDI-time-of-flight (TOF) mass spectrometry.


Insect Biochemistry and Molecular Biology | 1995

Insect cuticular proteins

Svend Olav Andersen; Peter Højrup; Peter Roepstorff

Insect cuticles are composite structural materials with mechanical properties optimal for their biological functions. The bulk properties of cuticles are to a large extent determined by the interactions between the various components, mainly the chitin filament system and the proteins. The various cuticular types show pronounced differences in mechanical properties, and it is suggested that these differences can be related to the properties of the individual proteins and to the degree of secondary stabilization (sclerotization). The amino acid sequences, which have been obtained for insect cuticular proteins either by direct sequencing of purified proteins or by deduction from corresponding DNA-sequences, are listed according to insect order and species. Extensive sequence similarity is observed among several cuticular proteins obtained from different insect orders. Other cuticular proteins are characterized by repeated occurrence of a few small motifs consisting mainly of hydrophobic residues. The latter group of proteins has so far only been reported from stiff cuticles. The possible relevance of the various motifs and repeats for protein interaction and the mechanical properties of cuticles is discussed.


Mass Spectrometry Reviews | 1996

Mass spectrometry of nucleic acids.

E. Nordhoff; F. Kirpekar; Peter Roepstorff

The present article is a survey of ESI and MALDI mass spectrometric analysis of nucleic acid oligomers and polymers. In order to limit the extent of the review, mass spectrometry of mononucleotides is generally not considered, except where such data are important for an understanding of the analysis of larger nucleic acids. The first part of the review is a condensed description of the structure and the acid-base properties of nucleic acids. The remaining part is divided into three main sections, dealing with the practical aspects of the two ionization techniques, fragmentation, and applications, respectively. The first section includes an extensive discussion of experimental parameters and problems, which are important for the analysis of different types of nucleic acid samples, including noncovalent complexes and mixtures. At the end of this section, as well as the following one, a comparison between MALDI and ESI as ionization techniques for nucleic acid is given. In addition to a detailed discussion of ion fragmentation, the fragmentation section includes an overview of the direct mass spectrometric sequencing of nucleic acids performed with either technique. The fragmentation reactions occurring upon MALDI and ESI are compared. The last section describes the life science applications of ESI-MS and MALDI-MS of nucleic acids; an account of experiments demonstrating the potential of a method, and of the bona fide solving of problems by ESI and MALDI is given.


Nature Biotechnology | 2003

A systematic approach to modeling, capturing, and disseminating proteomics experimental data

Chris F. Taylor; Norman W. Paton; Kevin L. Garwood; Paul Kirby; David Stead; Zhikang Yin; Eric W. Deutsch; Laura Selway; Janet Walker; Isabel Riba-Garcia; Shabaz Mohammed; Michael J. Deery; Julie Howard; Tom P. J. Dunkley; Ruedi Aebersold; Douglas B. Kell; Kathryn S. Lilley; Peter Roepstorff; John R. Yates; Andy Brass; Alistair J. P. Brown; Phil Cash; Simon J. Gaskell; Simon J. Hubbard; Stephen G. Oliver

Both the generation and the analysis of proteome data are becoming increasingly widespread, and the field of proteomics is moving incrementally toward high-throughput approaches. Techniques are also increasing in complexity as the relevant technologies evolve. A standard representation of both the methods used and the data generated in proteomics experiments, analogous to that of the MIAME (minimum information about a microarray experiment) guidelines for transcriptomics, and the associated MAGE (microarray gene expression) object model and XML (extensible markup language) implementation, has yet to emerge. This hinders the handling, exchange, and dissemination of proteomics data. Here, we present a UML (unified modeling language) approach to proteomics experimental data, describe XML and SQL (structured query language) implementations of that model, and discuss capture, storage, and dissemination strategies. These make explicit what data might be most usefully captured about proteomics experiments and provide complementary routes toward the implementation of a proteome repository.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Molecular identification of the insect adipokinetic hormone receptors

Frank Staubli; Thomas J. D. Jørgensen; Giuseppe Cazzamali; Michael Williamson; Camilla Lenz; Leif Søndergaard; Peter Roepstorff; Cornelis J. P. Grimmelikhuijzen

The insect adipokinetic hormones (AKHs) are a large family of peptide hormones that are involved in the mobilization of sugar and lipids from the insect fat body during energy-requiring activities such as flight and locomotion, but that also contribute to hemolymph sugar homeostasis. Here, we have identified the first insect AKH receptors, namely those from the fruitfly Drosophila melanogaster and the silkworm Bombyx mori. These results represent a breakthrough for insect molecular endocrinology, because it will lead to the cloning of all AKH receptors from all model insects used in AKH research, and, therefore, to a better understanding of AKH heterogeneity and actions. Interestingly, the insect AKH receptors are structurally and evolutionarily related to the gonadotropin-releasing hormone receptors from vertebrates.


Molecular & Cellular Proteomics | 2002

A Proteomic Approach for Identification of Secreted Proteins during the Differentiation of 3T3-L1 Preadipocytes to Adipocytes

Irina Kratchmarova; Dario E. Kalume; Blagoy Blagoev; Philipp E. Scherer; Alexandre V. Podtelejnikov; Henrik Molina; Perry E. Bickel; Jens S. Andersen; Minerva Fernandez; Jacob Bunkenborg; Peter Roepstorff; Karsten Kristiansen; Harvey F. Lodish; Matthias Mann; Akhilesh Pandey

We have undertaken a systematic proteomic approach to purify and identify secreted factors that are differentially expressed in preadipocytes versus adipocytes. Using one-dimensional gel electrophoresis combined with nanoelectrospray tandem mass spectrometry, proteins that were specifically secreted by 3T3-L1 preadipocytes or adipocytes were identified. In addition to a number of previously reported molecules that are up- or down-regulated during this differentiation process (adipsin, adipocyte complement-related protein 30 kDa, complement C3, and fibronectin), we identified four secreted molecules that have not been shown previously to be expressed differentially during the process of adipogenesis. Pigment epithelium-derived factor, a soluble molecule with potent antiangiogenic properties, was found to be highly secreted by preadipocytes but not adipocytes. Conversely, we found hippocampal cholinergic neurostimulating peptide, neutrophil gelatinase-associated lipocalin, and haptoglobin to be expressed highly by mature adipocytes. We also used liquid chromatography-based separation followed by automated tandem mass spectrometry to identify proteins secreted by mature adipocytes. Several additional secreted proteins including resistin, secreted acidic cysteine-rich glycoprotein/osteonectin, stromal cell-derived factor-1, cystatin C, gelsolin, and matrix metalloprotease-2 were identified by this method. To our knowledge, this is the first study to identify several novel secreted proteins by adipocytes by a proteomic approach using mass spectrometry.


PLOS Medicine | 2004

The Molecular Basis for Oat Intolerance in Patients with Celiac Disease

Helene Arentz-Hansen; Burkhard Fleckenstein; Øyvind Molberg; Helge Scott; Frits Koning; Günther Jung; Peter Roepstorff; Knut E.A. Lundin; Ludvig M. Sollid

ABSTRACT Background Celiac disease is a small intestinal inflammatory disorder characterized by malabsorption, nutrient deficiency, and a range of clinical manifestations. It is caused by an inappropriate immune response to dietary gluten and is treated with a gluten-free diet. Recent feeding studies have indicated oats to be safe for celiac disease patients, and oats are now often included in the celiac disease diet. This study aimed to investigate whether oat intolerance exists in celiac disease and to characterize the cells and processes underlying this intolerance. Methods and Findings We selected for study nine adults with celiac disease who had a history of oats exposure. Four of the patients had clinical symptoms on an oats-containing diet, and three of these four patients had intestinal inflammation typical of celiac disease at the time of oats exposure. We established oats-avenin-specific and -reactive intestinal T-cell lines from these three patients, as well as from two other patients who appeared to tolerate oats. The avenin-reactive T-cell lines recognized avenin peptides in the context of HLA-DQ2. These peptides have sequences rich in proline and glutamine residues closely resembling wheat gluten epitopes. Deamidation (glutamine→glutamic acid conversion) by tissue transglutaminase was involved in the avenin epitope formation. Conclusions We conclude that some celiac disease patients have avenin-reactive mucosal T-cells that can cause mucosal inflammation. Oat intolerance may be a reason for villous atrophy and inflammation in patients with celiac disease who are eating oats but otherwise are adhering to a strict gluten-free diet. Clinical follow-up of celiac disease patients eating oats is advisable.


Proteomics | 2008

Proteomic analysis of S-nitrosylated proteins in Arabidopsis thaliana undergoing hypersensitive response

María C. Romero-Puertas; Natascia Campostrini; Alessandro Matte; Pier Giorgio Righetti; Michele Perazzolli; Lello Zolla; Peter Roepstorff; Massimo Delledonne

Nitric oxide (NO) has a fundamental role in the plant hypersensitive disease resistance response (HR), and S‐nitrosylation is emerging as an important mechanism for the transduction of its bioactivity. A key step toward elucidating the mechanisms by which NO functions during the HR is the identification of the proteins that are subjected to this PTM. By using a proteomic approach involving 2‐DE and MS we characterized, for the first time, changes in S‐nitrosylated proteins in Arabidopsis thaliana undergoing HR. The 16 S‐nitrosylated proteins identified are mostly enzymes serving intermediary metabolism, signaling and antioxidant defense. The study of the effects of S‐nitrosylation on the activity of the identified proteins and its role during the execution of the disease resistance response will help to understand S‐nitrosylation function and significance in plants.


Plant Physiology | 2002

Proteome Analysis of Grain Filling and Seed Maturation in Barley

Christine Finnie; Sabrina Melchior; Peter Roepstorff; Birte Svensson

In monocotyledonous plants, the process of seed development involves the deposition of reserves in the starchy endosperm and development of the embryo and aleurone layer. The final stages of seed development are accompanied by an increase in desiccation tolerance and drying out of the mature seed. We have used two-dimensional gel electrophoresis for a time-resolved study of the changes in proteins that occur during seed development in barley (Hordeum vulgare). About 1,000 low-salt extractable protein spots could be resolved on the two-dimensional gels. Protein spots were divided into six categories according to the timing of appearance or disappearance during the 5-week period of comparison. Nineteen different proteins or protein fragments in 36 selected spots were identified by matrix-assisted laser-desorption ionization time of flight mass spectrometry (MS) or nano-electrospray tandem MS/MS. Some proteins were present throughout development (for example, cytosolic malate dehydrogenase), whereas others were associated with the early grain filling (ascorbate peroxidase) or desiccation (Cor14b) stages. Most noticeably, the development process is characterized by an accumulation of low-M r α-amylase/trypsin inhibitors, serine protease inhibitors, and enzymes involved in protection against oxidative stress. We present examples of proteins not previously experimentally observed, differential extractability of thiol-bound proteins, and possible allele-specific spot variation. Our results both confirm and expand on knowledge gained from previous analyses of individual proteins involved in grain filling and maturation.

Collaboration


Dive into the Peter Roepstorff's collaboration.

Top Co-Authors

Avatar

Martin R. Larsen

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas J. D. Jørgensen

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Birte Svensson

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Jonas Borch

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Stephen J. Fey

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Peter Mose Larsen

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thiago Verano-Braga

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge