Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonas Eriksson is active.

Publication


Featured researches published by Jonas Eriksson.


Nature | 2010

Whole-genome resequencing reveals loci under selection during chicken domestication

Carl-Johan Rubin; Michael C. Zody; Jonas Eriksson; Jennifer R. S. Meadows; Ellen Sherwood; Matthew T. Webster; Lin Jiang; Max Ingman; Ted Sharpe; Sojeong Ka; Finn Hallböök; Francois Besnier; Örjan Carlborg; Bertrand Bed’hom; Michèle Tixier-Boichard; Per Jensen; P. B. Siegel; Kerstin Lindblad-Toh; Leif Andersson

Domestic animals are excellent models for genetic studies of phenotypic evolution. They have evolved genetic adaptations to a new environment, the farm, and have been subjected to strong human-driven selection leading to remarkable phenotypic changes in morphology, physiology and behaviour. Identifying the genetic changes underlying these developments provides new insight into general mechanisms by which genetic variation shapes phenotypic diversity. Here we describe the use of massively parallel sequencing to identify selective sweeps of favourable alleles and candidate mutations that have had a prominent role in the domestication of chickens (Gallus gallus domesticus) and their subsequent specialization into broiler (meat-producing) and layer (egg-producing) chickens. We have generated 44.5-fold coverage of the chicken genome using pools of genomic DNA representing eight different populations of domestic chickens as well as red jungle fowl (Gallus gallus), the major wild ancestor. We report more than 7,000,000 single nucleotide polymorphisms, almost 1,300 deletions and a number of putative selective sweeps. One of the most striking selective sweeps found in all domestic chickens occurred at the locus for thyroid stimulating hormone receptor (TSHR), which has a pivotal role in metabolic regulation and photoperiod control of reproduction in vertebrates. Several of the selective sweeps detected in broilers overlapped genes associated with growth, appetite and metabolic regulation. We found little evidence that selection for loss-of-function mutations had a prominent role in chicken domestication, but we detected two deletions in coding sequences that we suggest are functionally important. This study has direct application to animal breeding and enhances the importance of the domestic chicken as a model organism for biomedical research.


PLOS Genetics | 2005

Identification of the Yellow Skin Gene Reveals a Hybrid Origin of the Domestic Chicken

Jonas Eriksson; Greger Larson; Ulrika Gunnarsson; Bertrand Bed'Hom; Michèle Tixier-Boichard; Lina Strömstedt; Dominic Wright; Annemieke Jungerius; Addie Vereijken; Ettore Randi; Per Jensen; Leif Andersson

Yellow skin is an abundant phenotype among domestic chickens and is caused by a recessive allele (W*Y) that allows deposition of yellow carotenoids in the skin. Here we show that yellow skin is caused by one or more cis-acting and tissue-specific regulatory mutation(s) that inhibit expression of BCDO2 (beta-carotene dioxygenase 2) in skin. Our data imply that carotenoids are taken up from the circulation in both genotypes but are degraded by BCDO2 in skin from animals carrying the white skin allele (W*W). Surprisingly, our results demonstrate that yellow skin does not originate from the red junglefowl (Gallus gallus), the presumed sole wild ancestor of the domestic chicken, but most likely from the closely related grey junglefowl (Gallus sonneratii). This is the first conclusive evidence for a hybrid origin of the domestic chicken, and it has important implications for our views of the domestication process.


Cancer Cell | 2012

Rapid Decrease in Delivery of Chemotherapy to Tumors after Anti-VEGF Therapy: Implications for Scheduling of Anti-Angiogenic Drugs

Astrid A.M. van der Veldt; Mark Lubberink; Idris Bahce; Maudy Walraven; Michiel P. de Boer; Henri Greuter; N. Harry Hendrikse; Jonas Eriksson; Albert D. Windhorst; Pieter E. Postmus; Henk M.W. Verheul; Erik H. Serné; Adriaan A. Lammertsma; Egbert F. Smit

Current strategies combining anti-angiogenic drugs with chemotherapy provide clinical benefit in cancer patients. It is assumed that anti-angiogenic drugs, such as bevacizumab, transiently normalize abnormal tumor vasculature and contribute to improved delivery of subsequent chemotherapy. To investigate this concept, a study was performed in non-small cell lung cancer (NSCLC) patients using positron emission tomography (PET) and radiolabeled docetaxel ([(11)C]docetaxel). In NSCLC, bevacizumab reduced both perfusion and net influx rate of [(11)C]docetaxel within 5 hr. These effects persisted after 4 days. The clinical relevance of these findings is notable, as there was no evidence for a substantial improvement in drug delivery to tumors. These findings highlight the importance of drug scheduling and advocate further studies to optimize scheduling of anti-angiogenic drugs.


International Journal of Radiation Oncology Biology Physics | 2015

A Comparative Study of the Hypoxia PET Tracers [18F]HX4, [18F]FAZA, and [18F]FMISO in a Preclinical Tumor Model

Sarah G.J.A. Peeters; C.M.L. Zegers; Natasja G. Lieuwes; Wouter van Elmpt; Jonas Eriksson; Guus A.M.S. van Dongen; Ludwig Dubois; Philippe Lambin

PURPOSE Several individual clinical and preclinical studies have shown the possibility of evaluating tumor hypoxia by using noninvasive positron emission tomography (PET). The current study compared 3 hypoxia PET tracers frequently used in the clinic, [(18)F]FMISO, [(18)F]FAZA, and [(18)F]HX4, in a preclinical tumor model. Tracer uptake was evaluated for the optimal time point for imaging, tumor-to-blood ratios (TBR), spatial reproducibility, and sensitivity to oxygen modification. METHODS AND MATERIALS PET/computed tomography (CT) images of rhabdomyosarcoma R1-bearing WAG/Rij rats were acquired at multiple time points post injection (p.i.) with one of the hypoxia tracers. TBR values were calculated, and reproducibility was investigated by voxel-to-voxel analysis, represented as correlation coefficients (R) or Dice similarity coefficient of the high-uptake volume. Tumor oxygen modifications were induced by exposure to either carbogen/nicotinamide treatment or 7% oxygen breathing. RESULTS TBR was stabilized and maximal at 2 hours p.i. for [(18)F]FAZA (4.0 ± 0.5) and at 3 hours p.i. for [(18)F]HX4 (7.2 ± 0.7), whereas [(18)F]FMISO showed a constant increasing TBR (9.0 ± 0.8 at 6 hours p.i.). High spatial reproducibility was observed by voxel-to-voxel comparisons and Dice similarity coefficient calculations on the 30% highest uptake volume for both [(18)F]FMISO (R = 0.86; Dice coefficient = 0.76) and [(18)F]HX4 (R = 0.76; Dice coefficient = 0.70), whereas [(18)F]FAZA was less reproducible (R = 0.52; Dice coefficient = 0.49). Modifying the hypoxic fraction resulted in enhanced mean standardized uptake values for both [(18)F]HX4 and [(18)F]FAZA upon 7% oxygen breathing. Only [(18)F]FMISO uptake was found to be reversible upon exposure to nicotinamide and carbogen. CONCLUSIONS This study indicates that each tracer has its own strengths and, depending on the question to be answered, a different tracer can be put forward.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Establishing the validity of domestication genes using DNA from ancient chickens

Linus Girdland Flink; Richard Allen; Ross Barnett; Helena Malmström; Joris Peters; Jonas Eriksson; Leif Andersson; Keith Dobney; Greger Larson

Significance Recent studies have identified the genetic basis of numerous traits that differentiate modern domestic species from their wild counterparts. In both plants and animals, traits (and the genes underlying them) found ubiquitously in modern breeds are often presumed to have been selected early during the domestication process. Here, by determining genetic variability in ancient European chickens over the past 2,000 years, we show that a mutation thought to be crucial during chicken domestication was not subjected to strong human-mediated selection until much later in time. This result demonstrates that the ubiquity of mutations, which differentiate modern wild and domestic taxa, does not necessarily imply ancient origins. Modern domestic plants and animals are subject to human-driven selection for desired phenotypic traits and behavior. Large-scale genetic studies of modern domestic populations and their wild relatives have revealed not only the genetic mechanisms underlying specific phenotypic traits, but also allowed for the identification of candidate domestication genes. Our understanding of the importance of these genes during the initial stages of the domestication process traditionally rests on the assumption that robust inferences about the past can be made on the basis of modern genetic datasets. A growing body of evidence from ancient DNA studies, however, has revealed that ancient and even historic populations often bear little resemblance to their modern counterparts. Here, we test the temporal context of selection on specific genetic loci known to differentiate modern domestic chickens from their extant wild ancestors. We extracted DNA from 80 ancient chickens excavated from 12 European archaeological sites, dated from ∼280 B.C. to the 18th century A.D. We targeted three unlinked genetic loci: the mitochondrial control region, a gene associated with yellow skin color (β-carotene dioxygenase 2), and a putative domestication gene thought to be linked to photoperiod and reproduction (thyroid-stimulating hormone receptor, TSHR). Our results reveal significant variability in both nuclear genes, suggesting that the commonality of yellow skin in Western breeds and the near fixation of TSHR in all modern chickens took place only in the past 500 y. In addition, mitochondrial variation has increased as a result of recent admixture with exotic breeds. We conclude by emphasizing the perils of inferring the past from modern genetic data alone.


ACS Chemical Neuroscience | 2013

Advances in PET imaging of P-glycoprotein function at the blood-brain barrier.

Stina Syvänen; Jonas Eriksson

Efflux transporter P-glycoprotein (P-gp) at the blood-brain barrier (BBB) restricts substrate compounds from entering the brain and may thus contribute to pharmacoresistance observed in patient groups with refractory epilepsy and HIV. Altered P-gp function has also been implicated in neurodegenerative diseases such as Alzheimers and Parkinsons disease. Positron emission tomography (PET), a molecular imaging modality, has become a promising method to study the role of P-gp at the BBB. The first PET study of P-gp function was conducted in 1998, and during the past 15 years two main categories of P-gp PET tracers have been investigated: tracers that are substrates of P-gp efflux and tracers that are inhibitors of P-gp function. PET, as a noninvasive imaging technique, allows translational research. Examples of this are preclinical investigations of P-gp function before and after administering P-gp modulating drugs, investigations in various animal and disease models, and clinical investigations regarding disease and aging. The objective of the present review is to give an overview of available PET radiotracers for studies of P-gp and to discuss how such studies can be designed. Further, the review summarizes results from PET studies of P-gp function in different central nervous system disorders.


Journal of Cerebral Blood Flow and Metabolism | 2015

Quantification of [18F]DPA-714 binding in the human brain: initial studies in healthy controls and Alzheimer's disease patients.

Sandeep S.V. Golla; Ronald Boellaard; Vesa Oikonen; Anja Hoffmann; Bart N.M. van Berckel; Albert D. Windhorst; Jere Virta; Merja Haaparanta-Solin; Pauliina Luoto; Nina Savisto; Olof Solin; Ray Valencia; Andrea Thiele; Jonas Eriksson; Robert C. Schuit; Adriaan A. Lammertsma; Juha O. Rinne

Fluorine-18 labelled N,N-diethyl-2-(2-[4-(2-fluoroethoxy)phenyl]-5,7-dimethylpyrazolo[1,5-α]pyrimidine-3-yl)acetamide ([18F] DPA-714) binds to the 18-kDa translocator protein (TSPO) with high affinity. The aim of this initial methodological study was to develop a plasma input tracer kinetic model for quantification of [18F]DPA-714 binding in healthy subjects and Alzheimers disease (AD) patients, and to provide a preliminary assessment whether there is a disease-related signal. Ten AD patients and six healthy subjects underwent a dynamic positron emission tomography (PET) study along with arterial sampling and a scan protocol of 150 minutes after administration of 250 ± 10 MBq [18F]DPA-714. The model that provided the best fits to tissue time activity curves (TACs) was selected based on Akaike Information Criterion and F-test. The reversible two tissue compartment plasma input model with blood volume parameter was the preferred model for quantification of [18F]DPA-714 kinetics, irrespective of scan duration, volume of interest, and underlying volume of distribution (VT). Simplified reference tissue model (SRTM)-derived binding potential (BPND) using cerebellar gray matter as reference tissue correlated well with plasma input-based distribution volume ratio (DVR). These data suggest that [18F]DPA-714 cannot be used for separating individual AD patients from heathy subjects, but further studies including TSPO binding status are needed to substantiate these findings.


EJNMMI research | 2012

Blood-brain barrier P-glycoprotein function in healthy subjects and Alzheimer's disease patients: effect of polymorphisms in the ABCB1 gene

Daniëlle M.E. van Assema; Mark Lubberink; Patrizia Rizzu; John C. van Swieten; Robert C. Schuit; Jonas Eriksson; Philip Scheltens; Matthias J. Koepp; Adriaan A. Lammertsma; Bart N.M. van Berckel

BackgroundP-glycoprotein is a blood–brain barrier efflux transporter involved in the clearance of amyloid-beta from the brain and, as such, might be involved in the pathogenesis of Alzheimers disease. P-glycoprotein is encoded by the highly polymorphic ABCB1 gene. Single-nucleotide polymorphisms in the ABCB1 gene have been associated with altered P-glycoprotein expression and function. P-glycoprotein function at the blood–brain barrier can be quantified in vivo using the P-glycoprotein substrate tracer (R)-[11C]verapamil and positron emission tomography (PET). The purpose of this study was to assess the effects of C1236T, G2677T/A and C3435T single-nucleotide polymorphisms in ABCB1 on blood–brain barrier P-glycoprotein function in healthy subjects and patients with Alzheimers disease.MethodsThirty-two healthy subjects and seventeen patients with Alzheimers disease underwent 60-min dynamic (R)-[11C]verapamil PET scans. The binding potential of (R)-[11C]verapamil was assessed using a previously validated constrained two-tissue plasma input compartment model and used as outcome measure. DNA was isolated from frozen blood samples and C1236T, G2677T/A and C3435T single-nucleotide polymorphisms were amplified by polymerase chain reaction.ResultsIn healthy controls, binding potential did not differ between subjects without and with one or more T present in C1236T, G2677T and C3435T. In contrast, patients with Alzheimers disease with one or more T in C1236T, G2677T and C3435T had significantly higher binding potential values than patients without a T. In addition, there was a relationship between binding potential and T dose in C1236T and G2677T.ConclusionsIn Alzheimers disease patients, C1236T, G2677T/A and C3435T single-nucleotide polymorphisms may be related to changes in P-glycoprotein function at the blood–brain barrier. As such, genetic variations in ABCB1 might contribute to the progression of amyloid-beta deposition in the brain.


Neuropharmacology | 2014

(R)-[11C]PK11195 brain uptake as a biomarker of inflammation and antiepileptic drug resistance: Evaluation in a rat epilepsy model

R. M. Bogdanovic; Stina Syvänen; Christina Michler; Vera Russmann; Jonas Eriksson; Albert D. Windhorst; Adriaan A. Lammertsma; Elisabeth C. de Lange; Rob A. Voskuyl; Heidrun Potschka

Neuroinflammation has been suggested as a key determinant of the intrinsic severity of epilepsy. Glial cell activation and associated inflammatory signaling can influence seizure thresholds as well as the pharmacodynamics and pharmacokinetics of antiepileptic drugs. Based on these data, we hypothesized that molecular imaging of microglia activation might serve as a tool to predict drug refractoriness of epilepsy. Brain uptake of (R)-[11C]PK11195, a ligand of the translocator protein 18 kDa and molecular marker of microglia activation, was studied in a chronic model of temporal lobe epilepsy in rats with selection of phenobarbital responders and non-responders. In rats with drug-sensitive epilepsy, (R)-[11C]PK11195 brain uptake values were comparable to those in non-epileptic controls. Analysis in non-responders revealed enhanced brain uptake of up to 39% in different brain regions. The difference might be related to the fact that non-responders exhibited higher baseline seizure frequencies than responders indicating a more pronounced intrinsic disease severity. In hippocampal sections, ED1 immunostaining argued against a general difference in microglia activation between both groups. Our data suggest that TSPO PET imaging might serve as a biomarker for drug resistance in temporal lobe epilepsy. However, it needs to be considered that our findings indicate that the TSPO PET data might merely reflect seizure frequency. Future experimental and clinical studies should further evaluate the validity of TSPO PET data to predict the response to phenobarbital and other antiepileptic drugs in longitudinal studies with scanning before drug exposure and with a focus on the early phase following an epileptogenic brain insult.


PLOS ONE | 2012

Dual-phase PET-CT to differentiate [18F]Fluoromethylcholine uptake in reactive and malignant lymph nodes in patients with prostate cancer.

Daniela E. Oprea-Lager; Andrew Vincent; Reindert J. A. van Moorselaar; Winald R. Gerritsen; Alfons J.M. van den Eertwegh; Jonas Eriksson; Ronald Boellaard; Otto S. Hoekstra

Purpose To investigate whether time-trends of enhanced [18F]Fluoromethylcholine ([18F]FCH) in lymph nodes (LN) of prostate cancer (PCa) patients can help to discriminate reactive from malignant ones, and whether single time point standardized uptake value (SUV) measurements also suffice. Procedures 25 PCa patients with inguinal (presumed benign) and enlarged pelvic LN (presumed malignant) showing enhanced [18F]FCH uptake at dual-phase PET-CT were analyzed. Associations between LN status (benign versus malignant) and SUVmax and SUVmeanA50, determined at 2 min (early) and 30 min (late) post injection, were assessed. We considered two time-trends of [18F]FCH uptake: type A (SUV early > SUV late) and type B (SUV late ≥ SUV early). Histopathology and/or follow-up were used to confirm the assumption that LN with type A pattern are benign, and LN with type B pattern malignant. Results Analysis of 54 nodes showed that LN status, time-trends, and ‘late’ (30 min p.i.) SUVmax and SUVmeanA50 parameters were strongly associated (P<0.0001). SUVmax relative difference was the best LN status predictor. All but one inguinal LN showed a decreasing [18F]FCH uptake over time (pattern A), while 95% of the pelvic nodes presented a stable or increasing uptake (pattern B) type. Conclusions Time-trends of enhanced [18F]FCH uptake can help to characterize lymph nodes in prostate cancer patients. Single time-point SUV measurements, 30 min p.i., may be a reasonable alternative for predicting benign versus malignant status of lymph nodes, but this remains to be validated in non-enlarged pelvic lymph nodes.

Collaboration


Dive into the Jonas Eriksson's collaboration.

Top Co-Authors

Avatar

Albert D. Windhorst

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Gunnar Antoni

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert C. Schuit

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joost Verbeek

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge