Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonas Kvarnström is active.

Publication


Featured researches published by Jonas Kvarnström.


Annals of Mathematics and Artificial Intelligence | 2001

TALplanner: A temporal logic based forward chaining planner

Jonas Kvarnström; Patrick Doherty

We present TALplanner, a forward-chaining planner based on the use of domain-dependent search control knowledge represented as formulas in the Temporal Action Logic (TAL). TAL is a narrative based linear metric time logic used for reasoning about action and change in incompletely specified dynamic environments. TAL is used as the formal semantic basis for TALplanner, where a TAL goal narrative with control formulas is input to TALplanner which then generates a TAL narrative that entails the goal and control formulas. The sequential version of TALplanner is presented. The expressivity of plan operators is then extended to deal with an interesting class of resource types. An algorithm for generating concurrent plans, where operators have varying durations and internal state, is also presented. All versions of TALplanner have been implemented. The potential of these techniques is demonstrated by applying TALplanner to a number of standard planning benchmarks in the literature.


Autonomous Agents and Multi-Agent Systems | 2009

A temporal logic-based planning and execution monitoring framework for unmanned aircraft systems

Patrick Doherty; Jonas Kvarnström; Fredrik Heintz

Research with autonomous unmanned aircraft systems is reaching a new degree of sophistication where targeted missions require complex types of deliberative capability integrated in a practical manner in such systems. Due to these pragmatic constraints, integration is just as important as theoretical and applied work in developing the actual deliberative functionalities. In this article, we present a temporal logic-based task planning and execution monitoring framework and its integration into a fully deployed rotor-based unmanned aircraft system developed in our laboratory. We use a very challenging emergency services application involving body identification and supply delivery as a vehicle for showing the potential use of such a framework in real-world applications. TALplanner, a temporal logic-based task planner, is used to generate mission plans. Building further on the use of TAL (Temporal Action Logic), we show how knowledge gathered from the appropriate sensors during plan execution can be used to create state structures, incrementally building a partial logical model representing the actual development of the system and its environment over time. We then show how formulas in the same logic can be used to specify the desired behavior of the system and its environment and how violations of such formulas can be detected in a timely manner in an execution monitor subsystem. The pervasive use of logic throughout the higher level deliberative layers of the system architecture provides a solid shared declarative semantics that facilitates the transfer of knowledge between different modules.


Ai Magazine | 2001

TALplanner: A Temporal Logic-Based Planner

Patrick Doherty; Jonas Kvarnström

TALplanner is a forward-chaining planner that utilizes domain-dependent knowledge to control search in the state space generated by action invocation. The domain-dependent control knowledge, background knowledge, plans, and goals are all represented using formulas in a temporal logic called tal, which has been developed independently as a formalism for specifying agent narratives and reasoning about them. In the Fifth International Artificial Intelligence Planning and Scheduling Conference planning competition, TALplanner exhibited impressive performance, winning the Outstanding Performance Award in the Domain-Dependent Planning Competition. In this article, we provide an overview of TALplanner


international symposium on temporal representation and reasoning | 1999

TALplanner: an empirical investigation of a temporal logic-based forward chaining planner

Patrick Doherty; Jonas Kvarnström

We present a new forward chaining planner, TALplanner, based on ideas developed by Bacchus (1998) and Kabanza (1997), where domain-dependent search control knowledge represented as temporal formulas is used to effectively control forward chaining. Instead of using a linear modal tense logic as with Bacchus and Kabanza, we use TAL, a narrative-based linear temporal logic used for reasoning about action and change in incompletely specified dynamic environments. Two versions of TALplanner are considered, TALplan/modal which is based on the use of emulated modal formulas and a progression algorithm, and TALplan/non-modal which uses neither modal formulas nor a progression algorithm. For both versions of TALplanner and for all tested domains, TALplanner is shown to be considerably faster and requires less memory. The TAL versions also permit the representation of durative actions with internal state.


robotics science and systems | 2009

Positioning Unmanned Aerial Vehicles As Communication Relays for Surveillance Tasks

Oleg Burdakov; Patrick Doherty; Kaj Holmberg; Jonas Kvarnström; Per-Magnus Olsson

When unmanned aerial vehicles (UAVs) are used to survey distant targets, it is important to transmit sensor information back to a base station. As this communication often requires high uninterrupted bandwidth, the surveying UAV often needs afree line-of-sight to the base station, which can be problematic in urban or mountainous areas. Communication ranges may also belimited, especially for smaller UAVs. Though both problems can be solved through the use of relay chains consisting of one or more intermediate relay UAVs, this leads to a new problem: Where should relays be placed for optimum performance? We present two new algorithms capable of generating such relay chains, one being a dual ascent algorithm and the other a modification of the Bellman-Ford algorithm. As the priorities between the numberof hops in the relay chain and the cost of the chain may vary, wecalculate chains of different lengths and costs and let the ground operator choose between them. Several different formulations for edge costs are presented. In our test cases, both algorithms are substantially faster than an optimized version of the original Bellman-Ford algorithm, which is used for comparison.


Foundations of Artificial Intelligence | 2008

Temporal Action Logics

Patrick Doherty; Jonas Kvarnström

The study of frameworks and formalisms for reasoning about action and change [67, 58, 61, 65, 70, 3, 57] has been central to the knowledge representation field almost from the inception of Artifici ...


Advanced Engineering Informatics | 2010

Bridging the sense-reasoning gap: DyKnow - Stream-based middleware for knowledge processing

Fredrik Heintz; Jonas Kvarnström; Patrick Doherty

Engineering autonomous agents that display rational and goal-directed behavior in dynamic physical environments requires a steady flow of information from sensors to high-level reasoning components. However, while sensors tend to generate noisy and incomplete quantitative data, reasoning often requires crisp symbolic knowledge. The gap between sensing and reasoning is quite wide, and cannot in general be bridged in a single step. Instead, this task requires a more general approach to integrating and organizing multiple forms of information and knowledge processing on different levels of abstraction in a structured and principled manner. We propose knowledge processing middleware as a systematic approach to organizing such processing. Desirable properties are presented and motivated. We argue that a declarative stream-based system is appropriate for the required functionality and present DyKnow, a concrete implemented instantiation of stream-based knowledge processing middleware with a formal semantics. Several types of knowledge processes are defined and motivated in the context of a UAV traffic monitoring application. In the implemented application, DyKnow is used to incrementally bridge the sense-reasoning gap and generate partial logical models of the environment over which metric temporal logical formulas are evaluated. Using such formulas, hypotheses are formed and validated about the type of vehicles being observed. DyKnow is also used to generate event streams representing for example changes in qualitative spatial relations, which are used to detect traffic violations expressed as declarative chronicles.


The International Journal of Robotics Research | 2010

Relay Positioning for Unmanned Aerial Vehicle Surveillance

Oleg Burdakov; Patrick Doherty; Kaj Holmberg; Jonas Kvarnström; Per-Magnus Olsson

When unmanned aerial vehicles (UAVs) are used for surveillance, information must often be transmitted to a base station in real time. However, limited communication ranges and the common requirement of free line of sight may make direct transmissions from distant targets impossible. This problem can be solved using relay chains consisting of one or more intermediate relay UAVs. This leads to the problem of positioning such relays given known obstacles, while taking into account a possibly mission-specific quality measure. The maximum quality of a chain may depend strongly on the number of UAVs allocated. Therefore, it is desirable to either generate a chain of maximum quality given the available UAVs or allow a choice from a spectrum of Pareto-optimal chains corresponding to different trade-offs between the number of UAVs used and the resulting quality. In this article, we define several problem variations in a continuous three-dimensional setting. We show how sets of Pareto-optimal chains can be generated using graph search and present a new label-correcting algorithm generating such chains significantly more efficiently than the best-known algorithms in the literature. Finally, we present a new dual ascent algorithm with better performance for certain tasks and situations.


Journal of Artificial Intelligence Research | 2003

TALplanner in the third international planning competition: extensions and control rules

Jonas Kvarnström; Martin Magnusson

TALplanner is a forward-chaining planner that relies on domain knowledge in the shape of temporal logic formulas in order to prune irrelevant parts of the search space. TALplanner recently participated in the third International Planning Competition, which had a clear emphasis on increasing the complexity of the problem domains being used as benchmark tests and the expressivity required to represent these domains in a planning system. Like many other planners, TALplanner had support for some but not all aspects of this increase in expressivity, and a number of changes to the planner were required. After a short introduction to TALplanner, this article describes some of the changes that were made before and during the competition. We also describe the process of introducing suitable domain knowledge for several of the competition domains.


international conference on control, automation, robotics and vision | 2010

Generating UAV communication networks for monitoring and surveillance

Per-Magnus Olsson; Jonas Kvarnström; Patrick Doherty; Oleg Burdakov; Kaj Holmberg

An important use of unmanned aerial vehicles is surveillance of distant targets, where sensor information must quickly be transmitted back to a base station. In many cases, high uninterrupted bandwidth requires line-of-sight between sender and transmitter to minimize quality degradation. Communication range is typically limited, especially when smaller UAVs are used. Both problems can be solved by creating relay chains for surveillance of a single target, and relay trees for simultaneous surveillance of multiple targets. In this paper, we show how such chains and trees can be calculated. For relay chains we create a set of chains offering different trade-offs between the number of UAVs in the chain and the chains cost. We also show new results on how relay trees can be quickly calculated and then incrementally improved if necessary. Encouraging empirical results for improvement of relay trees are presented.

Collaboration


Dive into the Jonas Kvarnström's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge