Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fredrik Heintz is active.

Publication


Featured researches published by Fredrik Heintz.


Autonomous Agents and Multi-Agent Systems | 2009

A temporal logic-based planning and execution monitoring framework for unmanned aircraft systems

Patrick Doherty; Jonas Kvarnström; Fredrik Heintz

Research with autonomous unmanned aircraft systems is reaching a new degree of sophistication where targeted missions require complex types of deliberative capability integrated in a practical manner in such systems. Due to these pragmatic constraints, integration is just as important as theoretical and applied work in developing the actual deliberative functionalities. In this article, we present a temporal logic-based task planning and execution monitoring framework and its integration into a fully deployed rotor-based unmanned aircraft system developed in our laboratory. We use a very challenging emergency services application involving body identification and supply delivery as a vehicle for showing the potential use of such a framework in real-world applications. TALplanner, a temporal logic-based task planner, is used to generate mission plans. Building further on the use of TAL (Temporal Action Logic), we show how knowledge gathered from the appropriate sensors during plan execution can be used to create state structures, incrementally building a partial logical model representing the actual development of the system and its environment over time. We then show how formulas in the same logic can be used to specify the desired behavior of the system and its environment and how violations of such formulas can be detected in a timely manner in an execution monitor subsystem. The pervasive use of logic throughout the higher level deliberative layers of the system architecture provides a solid shared declarative semantics that facilitates the transfer of knowledge between different modules.


In Proceedings of the 7th International Symposium on Distributed Autonomous Systems, 2004 | 2004

A Distributed Architecture for Autonomous Unmanned Aerial Vehicle Experimentation

Patrick Doherty; Patrik Haslum; Fredrik Heintz; Torsten Merz; Per Nyblom; Tommy Persson; Björn Wingman

The emerging area of intelligent unmanned aerial vehicle (UAV) research has shown rapid development in recent years and offers a great number of research challenges for distributed autonomous robotics systems. In this article, a prototype distributed architecture for autonomous unmanned aerial vehicle experimentation is presented which supports the development of intelligent capabilities and their integration in a robust, scalable, plug-and-play hardware/software architecture. The architecture itself uses CORBA to support its infrastructure and it is based on a reactive concentric software control philosophy. A research prototype UAV system has been built, is operational and is being tested in actual missions over urban environments.


international conference on information fusion | 2007

From images to traffic behavior - A UAV tracking and monitoring application

Fredrik Heintz; Piotr Rudol; Patrick Doherty

An implemented system for achieving high level situation awareness about traffic situations in an urban area is described. It takes as input sequences of color and thermal images which are used to construct and maintain qualitative object structures and to recognize the traffic behavior of the tracked vehicles in real time. The system is tested both in simulation and on data collected during test flights. To facilitate the signal to symbol transformation and the easy integration of the streams of data from the sensors with the GIS and the chronicle recognition system, DyKnow, a stream-based knowledge processing middleware, is used. It handles the processing of streams, including the temporal aspects of merging and synchronizing streams, and provides suitable abstractions to allow high level reasoning and narrow the sense reasoning gap.


Advanced Engineering Informatics | 2010

Bridging the sense-reasoning gap: DyKnow - Stream-based middleware for knowledge processing

Fredrik Heintz; Jonas Kvarnström; Patrick Doherty

Engineering autonomous agents that display rational and goal-directed behavior in dynamic physical environments requires a steady flow of information from sensors to high-level reasoning components. However, while sensors tend to generate noisy and incomplete quantitative data, reasoning often requires crisp symbolic knowledge. The gap between sensing and reasoning is quite wide, and cannot in general be bridged in a single step. Instead, this task requires a more general approach to integrating and organizing multiple forms of information and knowledge processing on different levels of abstraction in a structured and principled manner. We propose knowledge processing middleware as a systematic approach to organizing such processing. Desirable properties are presented and motivated. We argue that a declarative stream-based system is appropriate for the required functionality and present DyKnow, a concrete implemented instantiation of stream-based knowledge processing middleware with a formal semantics. Several types of knowledge processes are defined and motivated in the context of a UAV traffic monitoring application. In the implemented application, DyKnow is used to incrementally bridge the sense-reasoning gap and generate partial logical models of the environment over which metric temporal logical formulas are evaluated. Using such formulas, hypotheses are formed and validated about the type of vehicles being observed. DyKnow is also used to generate event streams representing for example changes in qualitative spatial relations, which are used to detect traffic violations expressed as declarative chronicles.


Unmanned Systems | 2013

High-Level Mission Specification and Planning for Collaborative Unmanned Aircraft Systems Using Delegation

Patrick Doherty; Fredrik Heintz; Jonas Kvarnström

Automated specification, generation and execution of high level missions involving one or more heterogeneous unmanned aircraft systems is in its infancy. Much previous effort has been focused on the development of air vehicle platforms themselves together with the avionics and sensor subsystems that implement basic navigational skills. In order to increase the degree of autonomy in such systems so they can successfully participate in more complex mission scenarios such as those considered in emergency rescue that also include ongoing interactions with human operators, new architectural components and functionalities will be required to aid not only human operators in mission planning, but also the unmanned aircraft systems themselves in the automatic generation, execution and partial verification of mission plans to achieve mission goals. This article proposes a formal framework and architecture based on the unifying concept of delegation that can be used for the automated specification, generation and execution of high-level collaborative missions involving one or more air vehicles platforms and human operators. We describe an agent-based software architecture, a temporal logic-based mission specification language, a distributed temporal planner and a task specification language that when integrated provide a basis for the generation, instantiation and execution of complex collaborative missions on heterogeneous air vehicle systems. A prototype of the framework is operational in a number of autonomous unmanned aircraft systems developed in our research lab.


intelligent robots and systems | 2009

A stream-based hierarchical anchoring framework

Fredrik Heintz; Jonas Kvarnström; Patrick Doherty

Autonomous systems situated in the real world often need to recognize, track, and reason about various types of physical objects. In order to allow reasoning at a symbolic level, one must create and continuously maintain a correlation between symbols labeling physical objects and the sensor data being collected about them, a process called anchoring. In this paper we present a stream-based hierarchical anchoring framework extending the DyKnow knowledge processing middleware. A classification hierarchy is associated with expressive conditions for hypothesizing the type and identity of an object given streams of temporally tagged sensor data. The anchoring process constructs and maintains a set of object linkage structures representing the best possible hypotheses at any time. Each hypothesis can be incrementally generalized or narrowed down as new sensor data arrives. Symbols can be associated with an object at any level of classification, permitting symbolic reasoning on different levels of abstraction. The approach has been applied to a traffic monitoring application where an unmanned aerial vehicle collects information about a small urban area in order to detect traffic violations.


MSRAS | 2004

DyKnow : A Framework for Processing Dynamic Knowledge and Object Structures in Autonomous Systems

Fredrik Heintz; Patrick Doherty

Any autonomous system embedded in a dynamic and changing environment must be able to create qualitative knowledge and object structures representing aspects of its environment on the fly from raw or preprocessed sensor data in order to reason qualitatively about the environment. These structures must be managed and made accessible to deliberative and reactive functionalities which are dependent on being situationally aware of the changes in both the robotic agent’s embedding and internal environment. DyKnow is a software framework which provides a set of functionalities for contextually accessing, storing, creating and processing such structures. The system is implemented and has been deployed in a deliberative/reactive architecture for an autonomous unmanned aerial vehicle. The architecture itself is distributed and uses real-time CORBA as a communications infrastructure. We describe the system and show how it can be used in execution monitoring and chronicle recognition scenarios for UAV applications.


pacific rim international conference on multi-agents | 2010

Complex task allocation in mixed-initiative delegation: a UAV case study

David Landén; Fredrik Heintz; Patrick Doherty

Unmanned aircraft systems (UASs) are now becoming technologically mature enough to be integrated into civil society. An essential issue is principled mixed-initiative interaction between UASs and human operators. Two central problems are to specify the structure and requirements of complex tasks and to assign platforms to these tasks. We have previously proposed Task Specification Trees (TSTs) as a highly expressive specification language for complex multi-agent tasks that supports mixed-initiative delegation and adjustable autonomy. The main contribution of this paper is a sound and complete distributed heuristic search algorithm for allocating the individual tasks in a TST to platforms. The allocation also instantiates the parameters of the tasks such that all the constraints of the TST are satisfied. Constraints are used to model dependencies between tasks, resource usage as well as temporal and spatial requirements on complex tasks. Finally, we discuss a concrete case study with a team of unmanned aerial vehicles assisting in a challenging emergency situation.


frontiers in education conference | 2016

A review of models for introducing computational thinking, computer science and computing in K-12 education

Fredrik Heintz; Linda Mannila; Tommy Färnqvist

Computer science is becoming ever increasingly important to our society. Computer science content has, however, not traditionally been considered a natural part of curricula for primary and secondary education. Computer science has traditionally been primarily a university level discipline and there are no widely accepted general standards for what computer science at K-12 level entails. Also, as the interest in this area is rather new, the amount of research conducted in the field is still limited. In this paper we review how 10 different countries have approached introducing computer science into their K-12 education. The countries are Australia, England, Estonia, Finland, New Zealand, Norway, Sweden, South Korea, Poland and USA. The studied countries either emphasize digital competencies together with programming or the broader subject of computer science or computing. Computational thinking is rarely mentioned explicitly, but the ideas are often included in some form. The most common model is to make computer science content compulsory in primary school and elective in secondary school. A few countries have made it compulsory in both, while some countries have only introduced it in secondary school.


Engineering Applications of Artificial Intelligence | 2010

FlexDx: A reconfigurable diagnosis framework

Mattias Krysander; Fredrik Heintz; Jacob Roll; Erik Frisk

Detecting and isolating multiple faults is a computationally expensive task. It typically consists of computing a set of tests and then computing the diagnoses based on the test results. This paper describes FlexDx, a reconfigurable diagnosis framework which reduces the computational burden while retaining the isolation performance by only running a subset of all tests that is sufficient to find new conflicts. Tests in FlexDx are thresholded residuals used to indicate conflicts in the monitored system. Special attention is given to the issues introduced by a reconfigurable diagnosis framework. For example, tests are added and removed dynamically, tests are partially performed on historic data, and synchronous and asynchronous processing are combined. To handle these issues FlexDx has been implemented using DyKnow, a stream-based knowledge processing middleware framework. Concrete methods for each component in the FlexDx framework are presented. The complete approach is exemplified on a dynamic system which clearly illustrates the complexity of the problem and the computational gain of the proposed approach.

Collaboration


Dive into the Fredrik Heintz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge