Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonas Östh is active.

Publication


Featured researches published by Jonas Östh.


Traffic Injury Prevention | 2012

The Occupant Response to Autonomous Braking: A Modeling Approach That Accounts for Active Musculature

Jonas Östh; Karin Brolin; Stina Carlsson; Jac Wismans; Johan Davidsson

Objective: The aim of this study is to model occupant kinematics in an autonomous braking event by using a finite element (FE) human body model (HBM) with active muscles as a step toward HBMs that can be used for injury prediction in integrated precrash and crash simulations. Methods: Trunk and neck musculature was added to an existing FE HBM. Active muscle responses were achieved using a simplified implementation of 3 feedback controllers for head angle, neck angle, and angle of the lumbar spine. The HBM was compared with volunteer responses in sled tests with 10 ms−2 deceleration over 0.2 s and in 1.4-s autonomous braking interventions with a peak deceleration of 6.7 ms−2. Results: The HBM captures the characteristics of the kinematics of volunteers in sled tests. Peak forward displacements have the same timing as for the volunteers, and lumbar muscle activation timing matches data from one of the volunteers. The responses of volunteers in autonomous braking interventions are mainly small head rotations and translational motions. This is captured by the HBM controller objective, which is to maintain the initial angular positions. The HBM response with active muscles is within ±1 standard deviation of the average volunteer response with respect to head displacements and angular rotation. Conclusions: With the implementation of feedback control of active musculature in an FE HBM it is possible to model the occupant response to autonomous braking interventions. The lumbar controller is important for the simulations of lap belt–restrained occupants; it is less important for the kinematics of occupants with a modern 3-point seat belt. Increasing head and neck controller gains provides a better correlation for head rotation, whereas it reduces the vertical head displacement and introduces oscillations.


Traffic Injury Prevention | 2015

A Human Body Model With Active Muscles for Simulation of Pretensioned Restraints in Autonomous Braking Interventions

Jonas Östh; Karin Brolin; Dan Bråse

Objective: The aim of this work is to study driver and passenger kinematics in autonomous braking scenarios, with and without pretensioned seat belts, using a whole-body finite element (FE) human body model (HBM) with active muscles. Methods: Upper extremity musculature for elbow and shoulder flexion–extension feedback control was added to an HBM that was previously complemented with feedback controlled muscles for the trunk and neck. Controller gains were found using a radial basis function metamodel sampled by making 144 simulations of an 8 ms−2 volunteer sled test. The HBM kinematics, interaction forces, and muscle activations were validated using a second volunteer data set for the passenger and driver positions, with and without 170 N seat belt pretension, in 11 ms−2 autonomous braking deceleration. The HBM was then used for a parameter study in which seat belt pretension force and timing were varied from 170 to 570 N and from 0.25 s before to 0.15 s after deceleration onset, in an 11 ms−2 autonomous braking scenario. Results: The model validation showed that the forward displacements and interaction forces of the HBM correlated with those of corresponding volunteer tests. Muscle activations and head rotation angles were overestimated in the HBM when compared with volunteer data. With a standard seat belt in 11 ms−2 autonomous braking interventions, the HBM exhibited peak forward head displacements of 153 and 232 mm for the driver and passenger positions. When 570 N seat belt pretension was applied 0.15 s before deceleration onset, a reduction of peak head displacements to 60 and 75 mm was predicted. Conclusions: Driver and passenger responses to autonomous braking with standard and pretensioned restraints were successfully modeled in a whole-body FE HBM with feedback controlled active muscles. Variations of belt pretension force level and timing revealed that belt pretension 0.15 s before deceleration onset had the largest effect in reducing forward head and torso movement caused by the autonomous brake intervention. The displacement of the head relative to the torso for the HBM is quite constant for all variations in timing and belt force; it is the reduced torso displacements that lead to reduced forward head displacements.


Computer Methods in Biomechanics and Biomedical Engineering | 2012

Active muscle response using feedback control of a finite element human arm model

Jonas Östh; Karin Brolin; Riender Happee

Mathematical human body models (HBMs) are important research tools that are used to study the human response in car crash situations. Development of automotive safety systems requires the implementation of active muscle response in HBM, as novel safety systems also interact with vehicle occupants in the pre-crash phase. In this study, active muscle response was implemented using feedback control of a nonlinear muscle model in the right upper extremity of a finite element (FE) HBM. Hill-type line muscle elements were added, and the active and passive properties were assessed. Volunteer tests with low impact loading resulting in elbow flexion motions were performed. Simulations of posture maintenance in a gravity field and the volunteer tests were successfully conducted. It was concluded that feedback control of a nonlinear musculoskeletal model can be used to obtain posture maintenance and human-like reflexive responses in an FE HBM.


Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2013

Simulation of active skeletal muscle tissue with a transversely isotropic viscohyperelastic continuum material model

Hamid Khodaei; Salar Mostofizadeh; Karin Brolin; Håkan Johansson; Jonas Östh

Human body models with biofidelic kinematics in vehicle pre-crash and crash simulations require a constitutive model of muscle tissue with both passive and active properties. Therefore, a transversely isotropic viscohyperelastic continuum material model with element-local fiber definition and activation capability is suggested for use with explicit finite element codes. Simulations of experiments with New Zealand rabbit’s tibialis anterior muscle at three different strain rates were performed. Three different active force–length relations were used, where a robust performance of the material model was observed. The results were compared with the experimental data and the simulation results from a previous study, where the muscle tissue was modeled with a combination of discrete and continuum elements. The proposed material model compared favorably, and integrating the active properties of the muscle into a continuum material model opens for applications with complex muscle geometries.


Journal of Biomechanical Engineering-transactions of The Asme | 2016

A Female Ligamentous Cervical Spine Finite Element Model Validated for Physiological Loads

Jonas Östh; Karin Brolin; Mats Y. Svensson; Astrid Linder

Mathematical cervical spine models allow for studying of impact loading that can cause whiplash associated disorders (WAD). However, existing models only cover the male anthropometry, despite the female population being at a higher risk of sustaining WAD in automotive rear-end impacts. The aim of this study is to develop and validate a ligamentous cervical spine intended for biomechanical research on the effect of automotive impacts. A female model has the potential to aid the design of better protection systems as well as improve understanding of injury mechanisms causing WAD. A finite element (FE) mesh was created from surface data of the cervical vertebrae of a 26-year old female (stature 167 cm, weight 59 kg). Soft tissues were generated from the skeletal geometry and anatomical literature descriptions. Ligaments were modeled with nonlinear elastic orthotropic membrane elements, intervertebral disks as composites of nonlinear elastic bulk elements, and orthotropic anulus fibrosus fiber layers, while cortical and trabecular bones were modeled as isotropic plastic-elastic. The model has geometrical features representative of the female cervical spine-the largest average difference compared with published anthropometric female data was the vertebral body depth being 3.4% shorter for the model. The majority the cervical segments compare well with respect to biomechanical data at physiological loads, with the best match for flexion-extension loads and less biofidelity for axial rotation. An average female FE ligamentous cervical spine model was developed and validated with respect to physiological loading. In flexion-extension simulations with the developed female model and an existing average male cervical spine model, a greater range of motion (ROM) was found in the female model.


Gait & Posture | 2014

A Method to Model Anticipatory Postural Control in Driver Braking Events

Jonas Östh; Erik Eliasson; Riender Happee; Karin Brolin

Human body models (HBMs) for vehicle occupant simulations have recently been extended with active muscles and postural control strategies. Feedback control has been used to model occupant responses to autonomous braking interventions. However, driver postural responses during driver initiated braking differ greatly from autonomous braking. In the present study, an anticipatory postural response was hypothesized, modelled in a whole-body HBM with feedback controlled muscles, and validated using existing volunteer data. The anticipatory response was modelled as a time dependent change in the reference value for the feedback controllers, which generates correcting moments to counteract the braking deceleration. The results showed that, in 11 m/s(2) driver braking simulations, including the anticipatory postural response reduced the peak forward displacement of the head by 100mm, of the shoulder by 30 mm, while the peak head flexion rotation was reduced by 18°. The HBM kinematic response was within a one standard deviation corridor of corresponding test data from volunteers performing maximum braking. It was concluded that the hypothesized anticipatory responses can be modelled by changing the reference positions of the individual joint feedback controllers that regulate muscle activation levels. The addition of anticipatory postural control muscle activations appears to explain the difference in occupant kinematics between driver and autonomous braking. This method of modelling postural reactions can be applied to the simulation of other driver voluntary actions, such as emergency avoidance by steering.


Traffic Injury Prevention | 2017

Effects of whole spine alignment patterns on neck responses in rear end impact

Fusako Sato; Mamiko Odani; Yusuke Miyazaki; Kunio Yamazaki; Jonas Östh; Mats Y. Svensson

ABSTRACT Objective: The aim of this study was to investigate the whole spine alignment in automotive seated postures for both genders and the effects of the spinal alignment patterns on cervical vertebral motion in rear impact using a human finite element (FE) model. Methods: Image data for 8 female and 7 male subjects in a seated posture acquired by an upright open magnetic resonance imaging (MRI) system were utilized. Spinal alignment was determined from the centers of the vertebrae and average spinal alignment patterns for both genders were estimated by multidimensional scaling (MDS). An occupant FE model of female average size (162 cm, 62 kg; the AF 50 size model) was developed by scaling THUMS AF 05. The average spinal alignment pattern for females was implemented in the model, and model validation was made with respect to female volunteer sled test data from rear end impacts. Thereafter, the average spinal alignment pattern for males and representative spinal alignments for all subjects were implemented in the validated female model, and additional FE simulations of the sled test were conducted to investigate effects of spinal alignment patterns on cervical vertebral motion. Results: The estimated average spinal alignment pattern was slight kyphotic, or almost straight cervical and less-kyphotic thoracic spine for the females and lordotic cervical and more pronounced kyphotic thoracic spine for the males. The AF 50 size model with the female average spinal alignment exhibited spine straightening from upper thoracic vertebra level and showed larger intervertebral angular displacements in the cervical spine than the one with the male average spinal alignment. Conclusions: The cervical spine alignment is continuous with the thoracic spine, and a trend of the relationship between cervical spine and thoracic spinal alignment was shown in this study. Simulation results suggested that variations in thoracic spinal alignment had a potential impact on cervical spine motion as well as cervical spinal alignment in rear end impact condition.


Journal of Biomechanics | 2017

A female head–neck model for rear impact simulations

Jonas Östh; Manuel Mendoza-Vazquez; Fusako Sato; Mats Y. Svensson; Astrid Linder; Karin Brolin

Several mathematical cervical models of the 50th percentile male have been developed and used for impact biomechanics research. However, for the 50th percentile female no similar modelling efforts have been made, despite females being subject to a higher risk of soft tissue neck injuries. This is a limitation for the development of automotive protective systems addressing Whiplash Associated Disorders (WADs), most commonly caused in rear impacts, as the risk for females sustaining WAD symptoms is double that of males. In this study, a finite element head and neck model of a 50th percentile female was validated in rear impacts. A previously validated ligamentous cervical spine model was complemented with a rigid body head, soft tissues and muscles. In both physiological flexion-extension motions and simulated rear impacts, the kinematic response at segment level was comparable to that of human subjects. Evaluation of ligament stress levels in simulations with varied initial cervical curvature revealed that if an individual assumes a more lordotic posture than the neutral, a higher risk of WAD might occur in rear impact. The female head and neck model, together with a kinematical whole body model which is under development, addresses a need for tools for assessment of automotive protection systems for the group which is at the highest risk to sustain WAD.


Stapp car crash journal | 2013

Driver Kinematic and Muscle Responses in Braking Events with Standard and Reversible Pre-tensioned Restraints: Validation Data for Human Models

Jonas Östh; Jona Marin Olafsdottir; Johan Davidsson; Karin Brolin


2013 IRCOBI ConferenceVOLVOHumaneticsAutolivToyotaNissan Motor Co Ltd, JapanCollision Research & Analysis, Inc.JP Research, Inc.BritaxJASTI Co., LTDDiversified Technical Systems (DTS)DSD Dr. Steffan Datentechnik GmbH, Linz (Oesterreich)FolksamEuro NCAPSAFER Vehicle and Traffic Safety CentreCity of GothenburgChalmers University of Technology, SwedenInternational Research Council on Biomechanics of Injury (IRCOBI) | 2013

Passenger Kinematics and Muscle Responses in Autonomous Braking Events with Standard and Reversible Pre‐tensioned Restraints

Jona Marin Olafsdottir; Jonas Östh; Johan Davidsson; Karin Brolin

Collaboration


Dive into the Jonas Östh's collaboration.

Top Co-Authors

Avatar

Karin Brolin

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Johan Davidsson

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Jona Marin Olafsdottir

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Mats Y. Svensson

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Manuel Mendoza-Vazquez

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Fusako Sato

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Jac Wismans

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Ruth Paas

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Yusuke Miyazaki

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Riender Happee

Delft University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge