Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan A. Fan is active.

Publication


Featured researches published by Jonathan A. Fan.


Science | 2010

Self-Assembled Plasmonic Nanoparticle Clusters

Jonathan A. Fan; Chihhui Wu; Kui Bao; Jiming Bao; Rizia Bardhan; Naomi J. Halas; Vinothan N. Manoharan; Peter Nordlander; Gennady Shvets; Federico Capasso

Optical Nanoengineering Optics and electronics operate at very different length scales. Surface plasmons are light-induced electronic excitations that are being pursued as a route to bridge the length scales and bring the processing speed offered by optical communication down to the size scales of electronic chip circuitry. Now, Fan et al. (p. 1135) describe the self-assembly of nanoscale dielectric particles coated with gold. Functionalization of the gold surface with polymer ligands allowed controlled production of clusters of nanoparticles. The optical properties of the self-assembled nanostructures depended on the number of components within the cluster and each structure could be selected for its unique optical properties. Such a bottom-up approach should help in fabricating designed optical circuits on the nanoscale. A hierarchy of nanoscale optical structures is created from nanoparticles that have metal shells and dielectric cores. The self-assembly of colloids is an alternative to top-down processing that enables the fabrication of nanostructures. We show that self-assembled clusters of metal-dielectric spheres are the basis for nanophotonic structures. By tailoring the number and position of spheres in close-packed clusters, plasmon modes exhibiting strong magnetic and Fano-like resonances emerge. The use of identical spheres simplifies cluster assembly and facilitates the fabrication of highly symmetric structures. Dielectric spacers are used to tailor the interparticle spacing in these clusters to be approximately 2 nanometers. These types of chemically synthesized nanoparticle clusters can be generalized to other two- and three-dimensional structures and can serve as building blocks for new metamaterials.


Nano Letters | 2010

Fano Resonances in Plasmonic Nanoclusters: Geometrical and Chemical Tunability

J. Britt Lassiter; Heidar Sobhani; Jonathan A. Fan; Janardan Kundu; Federico Capasso; Peter Nordlander; Naomi J. Halas

Clusters of plasmonic nanoparticles and nanostructures support Fano resonances. Here we show that this spectral feature, produced by the interference between bright and dark modes of the nanoparticle cluster, is strongly dependent upon both geometry and local dielectric environment. This permits a highly sensitive tunability of the Fano dip in both wavelength and amplitude by varying cluster dimensions, geometry, and relative size of the individual nanocluster components. Plasmonic nanoclusters show an unprecedented sensitivity to dielectric environment with a local surface plasmon resonance figure of merit of 5.7, the highest yet reported for localized surface plasmon resonance sensing in a finite nanostructure.


Nature Communications | 2014

Fractal design concepts for stretchable electronics

Jonathan A. Fan; Woon Hong Yeo; Yewang Su; Yoshiaki Hattori; Woosik Lee; Sung Young Jung; Yihui Zhang; Zhuangjian Liu; Huanyu Cheng; Leo Falgout; Mike Bajema; Todd P. Coleman; Daniel J. Gregoire; Ryan J. Larsen; Yonggang Huang; John A. Rogers

Stretchable electronics provide a foundation for applications that exceed the scope of conventional wafer and circuit board technologies due to their unique capacity to integrate with soft materials and curvilinear surfaces. The range of possibilities is predicated on the development of device architectures that simultaneously offer advanced electronic function and compliant mechanics. Here we report that thin films of hard electronic materials patterned in deterministic fractal motifs and bonded to elastomers enable unusual mechanics with important implications in stretchable device design. In particular, we demonstrate the utility of Peano, Greek cross, Vicsek and other fractal constructs to yield space-filling structures of electronic materials, including monocrystalline silicon, for electrophysiological sensors, precision monitors and actuators, and radio frequency antennas. These devices support conformal mounting on the skin and have unique properties such as invisibility under magnetic resonance imaging. The results suggest that fractal-based layouts represent important strategies for hard-soft materials integration.


Nano Letters | 2010

Fano-like Interference in Self-Assembled Plasmonic Quadrumer Clusters

Jonathan A. Fan; Kui Bao; Chihhui Wu; Jiming Bao; Rizia Bardhan; Naomi J. Halas; Vinothan N. Manoharan; Gennady Shvets; Peter Nordlander; Federico Capasso

Assemblies of strongly interacting metallic nanoparticles are the basis for plasmonic nanostructure engineering. We demonstrate that clusters of four identical spherical particles self-assembled into a close-packed asymmetric quadrumer support strong Fano-like interference. This feature is highly sensitive to the polarization of the incident electric field due to orientation-dependent coupling between particles in the cluster. This structure demonstrates how careful design of self-assembled colloidal systems can lead to the creation of new plasmonic modes and the enabling of interference effects in plasmonic systems.


Optics Express | 2008

Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K

Mikhail A. Belkin; Jonathan A. Fan; Sahand Hormoz; Federico Capasso; Suraj P. Khanna; Mohamed Lachab; A. G. Davies; E. H. Linfield

We report terahertz quantum cascade lasers operating in pulsed mode at an emission frequency of 3 THz and up to a maximum temperature of 178 K. The improvement in the maximum operating temperature is achieved by using a three-quantum-well active region design with resonant-phonon depopulation and by utilizing copper, instead of gold, for the cladding material in the metal-metal waveguides.


Nature Communications | 2014

Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances

Chihhui Wu; Nihal Arju; Glen Kelp; Jonathan A. Fan; Jason Dominguez; Edward Gonzales; Emanuel Tutuc; Igal Brener; Gennady Shvets

Silicon-process compatible metasurface was designed and tested in the infrared wavelength range. These metasurfaces show very high Q (>100), extreme chirality, and polarization conversion along with very low-loss operation. They show promise for sensing applications as well as spectrally selective CP thermal emitters.


Optics Express | 2006

Surface emitting terahertz quantum cascade laser with a double-metal waveguide

Jonathan A. Fan; Mikhail A. Belkin; Federico Capasso; Suraj P. Khanna; Mohamed Lachab; A. Giles Davies; E. H. Linfield

We investigate the implementation of surface emission via a second order grating in terahertz quantum cascade lasers with double-metal waveguides. Absorbing edge structures are designed to enforce anti-reflecting boundary conditions, which ensure distributed feedback in the cavity. The grating duty cycle is chosen in order to maximize slope efficiency. Fabricated devices demonstrate surface emission output powers that are comparable to those measured from edge-emitting double metal waveguide structures without gratings. The slope efficiency of surface emitting lasers is twice that of double-metal edge emitting structures. Surface emitting lasers show single mode behavior, with a beam divergence of approximately six degrees.


Nano Letters | 2011

DNA-enabled self-assembly of plasmonic nanoclusters.

Jonathan A. Fan; Yu He; Kui Bao; Chihhui Wu; Jiming Bao; Nicholas B. Schade; Vinothan N. Manoharan; Gennady Shvets; Peter Nordlander; David R. Liu; Federico Capasso

DNA nanotechnology provides a versatile foundation for the chemical assembly of nanostructures. Plasmonic nanoparticle assemblies are of particular interest because they can be tailored to exhibit a broad range of electromagnetic phenomena. In this Letter, we report the assembly of DNA-functionalized nanoparticles into heteropentamer clusters, which consist of a smaller gold sphere surrounded by a ring of four larger spheres. Magnetic and Fano-like resonances are observed in individual clusters. The DNA plays a dual role: it selectively assembles the clusters in solution and functions as an insulating spacer between the conductive nanoparticles. These particle assemblies can be generalized to a new class of DNA-enabled plasmonic heterostructures that comprise various active and passive materials and other forms of DNA scaffolding.


Optics Express | 2007

Plasmonic nanoclusters: a path towards negative-index metafluids.

Yaroslav A. Urzhumov; Gennady Shvets; Jonathan A. Fan; Federico Capasso; Daniel W. Brandl; Peter Nordlander

We introduce the concept of metafluids-liquid metamaterials based on clusters of metallic nanoparticles which we will term Artificial Plasmonic Molecules (APMs). APMs comprising four nanoparticles in a tetrahedral arrangement have isotropic electric and magnetic responses and are analyzed using the plasmon hybridization (PH) method, an electrostatic eigenvalue equation, and vectorial finite element frequency domain (FEFD) electromagnetic simulations. With the aid of group theory, we identify the resonances that provide the strongest electric and magnetic response and study them as a function of separation between spherical nanoparticles. It is demonstrated that a colloidal solution of plasmonic tetrahedral nanoclusters can act as an optical medium with very large, small, or even negative effective permittivity, epsilon(eff), and substantial effective magnetic susceptibility, Chi(eff) = mu(eff) -1, in the visible or near infrared bands. We suggest paths for increasing the magnetic response, decreasing the damping, and developing a metafluid with simultaneously negative epsilon(eff) and mu(eff).


Nano Letters | 2012

Plasmonic Mode Engineering with Templated Self-Assembled Nanoclusters

Jonathan A. Fan; Kui Bao; Lijun Sun; Jiming Bao; Vinothan N. Manoharan; Peter Nordlander; Federico Capasso

Plasmonic nanoparticle assemblies are a materials platform in which optical modes, resonant frequencies, and near-field intensities can be specified by the number and position of nanoparticles in a cluster. A current challenge is to achieve clusters with higher yields and new types of shapes. In this Letter, we show that a broad range of plasmonic nanoshell nanoclusters can be assembled onto a lithographically defined elastomeric substrate with relatively high yields using templated assembly. We assemble and measure the optical properties of three cluster types: Fano-resonant heptamers, linear chains, and rings of nanoparticles. The yield of heptamer clusters is measured to be over 30%. The assembly of plasmonic nanoclusters on an elastomer paves the way for new classes of plasmonic nanocircuits and colloidal metamaterials that can be transfer-printed onto various substrate media.

Collaboration


Dive into the Jonathan A. Fan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mikhail A. Belkin

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge