Jonathan A. Gerstenhaber
Temple University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jonathan A. Gerstenhaber.
Stem Cells and Development | 2014
Shimon Lecht; Jonathan A. Gerstenhaber; Collin T. Stabler; Pimchanok Pimton; Seda Karamil; Cezary Marcinkiewicz; Edward S. Schulman; Peter I. Lelkes
Conditioned media (CM) of transformed cells, such as the human lung-derived A549 cells, is a useful tool for directing differentiation of embryonic stem cells (ESCs). Previous work indicates that A549-CM induced pulmonary differentiation of mouse ESCs (mESCs). In this study, we compared the effects of A549-CM treatment on the differentiation of mESCs organized in monolayer or embryoid bodies. We analyzed the cultures treated with A549-CM using specific lineage markers by quantitative polymerase chain reaction (qPCR) and lineage-focused PCR arrays and demonstrated heterogeneous CM-induced differentiation. We then constructed bioinformatics-based gene networks to establish correlations between the upregulated lineage-specific genes and proteins in the A549-CM identified by proteomic analysis. Network analysis supported the phenotypic and genotypic heterogeneic differentiation of mESCs into multiple cell lineages via enriched stemness, cardiovascular, neuronal, and lung development gene ontologies (GOs). The significant enrichment toward lung ontologies was specific for treatment with A549-CM, but not CM of liver (HepG2) and pancreas (Capan-1) cells. Based on network analysis, we identified laminin alpha5, prosaposin, lamin A/C, dickkopf homolog 1, clusterin, and calreticulin as the most relevant proteins related to the enrichment of lung GOs. We validated the effects of laminin isoforms on mESC differentiation in vitro and found enriched differential induction of surfactant protein gene expression. Our data suggest that A549-CM can be used for identifying secreted proteins for the heterogeneous mixed-lineage differentiation of mESCs toward a variety of lung-relevant cells. Such a heterogeneous cell population will be required for the in vitro generation of complex lung tissue and mixed cell populations for regenerative pulmonary therapy.
Archive | 2018
Riddhi A. Gangolli; Sean M. Devlin; Jonathan A. Gerstenhaber; Peter I. Lelkes; Maobin Yang
IMPACT STATEMENT In this article we used an FDA-approved biodegradable biomaterial, poly (lactic-co-glycolic acid) (PLGA 75:25) to generate a bilayered scaffold with the capacity to induce differential, layer-specific dentinogenic differentiation of dental pulp stem cells (DPSCs) in vitro. We surmise that such a scaffold can be used in conjunction with current regenerative endodontic procedures to help regenerating a physiologic dentin-pulp complex in vivo. We hypothesize that our scaffold in conjunction with DPSCs will advance current regenerative endodontics by restoring dentin and initiating the innervation and revascularization of the pulp.
Journal of Neurotrauma | 2018
Jolanta Zieba; Maciej Walczak; Oleg Gordiienko; Jonathan A. Gerstenhaber; George M. Smith; Barbara Krynska
Myelomeningocele (MMC) is a devastating congenital neural tube defect that results in the exposure of spinal cord to the intrauterine environment, leading to secondary spinal cord injury and severe impairment. Although the mechanisms underlying the secondary pathogenesis are clinically relevant, the exact cause of in utero-acquired spinal cord damage remains unclear. The objective of this study was to determine whether the hyaluronic acid (HA) concentration in amniotic fluid (AF) in the retinoic acid-induced model of MMC is different from that in normal controls and whether these differences could have an impact on the viscosity of AF. Our data shows that the concentration of HA in AF samples from fetuses with MMC (MMC-AF) and normal control samples (Norm-AF) were not significantly different at embryonic day 18 (E18) and E20. Thereafter, the HA concentration significantly increased in Norm-AF but not in MMC-AF. Compared with Norm-AF, the concentration of HA in MMC-AF and the viscosity of MMC-AF were significantly lower at E21. Agarose gel electrophoresis confirmed a significant reduction in the HA level of MMC-AF compared with Norm-AF at E21. No HA-degrading activity was detected in MMC-AF. In summary, we identified a deficiency in the AF level of HA and the viscosity of AF in fetal rats with MMC. These data are discussed in relation to a potential role the reduction in the AF viscosity due to the low level of HA may play in the exacerbating effects of mechanical trauma on spinal cord damage at the MMC lesion site.
Journal of Neuroscience Methods | 2018
Omid Haji Maghsoudi; Annie Vahedipour; Jonathan A. Gerstenhaber; Shaun Philip George; Thomas Hallowell; Benjamin D. Robertson; Matthew Short; Andrew J. Spence
BACKGROUND Metal electrodes are a mainstay of neuroscience. Characterization of the electrical impedance properties of these cuffs is important to ensure successful and repeatable fabrication, achieve a target impedance, revise novel designs, and quantify the success or failure of implantation and any potential subsequent damage or encapsulation by scar tissue. NEW METHODS Impedances are frequently characterized using lumped-parameter circuit models of the electrode-electrolyte interface. Open-source tools to gather and analyze these frequency sweep data are lacking. Here, we present such software, in the form of Matlab code, which includes a GUI. It automatically acquires frequency sweep data and subsequently fits a simplified Randles model to these data, over a user specified frequency range, providing the user with the model parameter estimates. Also, it can measure an unknown impedance of an element over a range of frequencies, as long as an external resistor can be added for the measurements. RESULTS The tool was tested on five bright platinum nerve cuffs in vitro. The average charge transfer resistance, solution resistance, CPE value, and impedance magnitude were estimated. COMPARISON TO EXISTING METHODS The measured values of the impedance of cuffs were in agreement with the literature (Wei and Grill, 2009). Variation between cuffs fabricated as consistently as possible amounted to 10% for impedance magnitude and 4° for impedance phase. CONCLUSION The results show that this low-cost tool can be used to characterize a cuff across different conditions including after implantation. The latter makes it useful for a longer-term study of electrode viability.
International Journal of Nanomedicine | 2018
Frank C. Barone; Cezary Marcinkiewicz; Jie Li; Mark Sternberg; Peter I. Lelkes; Dmitriy A Dikin; Peter J. Bergold; Jonathan A. Gerstenhaber; Giora Z. Feuerstein
Introduction We hereby report on studies aimed to characterize safety, pharmacokinetics, and bio-distribution of fluorescent nanodiamond particles (NV)-Z~800 (FNDP-(NV)) administered to rats by intravenous infusion in a single high dose. Methods Broad scale biological variables were monitored following acute (90 minutes) and subacute (5 or 14 days) exposure to FNDP-(NV). Primary endpoints included morbidity and mortality, while secondary endpoints focused on hematology and clinical biochemistry biomarkers. Particle distribution (liver, spleen, lung, heart, and kidney) was assessed by whole organ near infrared imaging using an in vivo imaging system. This was validated by the quantification of particles extracted from the same organs and visualized by fluorescent and scanning electron microscopy. FNDP-(NV)-treated rats showed no change in morbidity or mortality and preserved normal motor and sensory function, as assessed by six different tests. Results Blood cell counts and plasma biochemistry remained normal. The particles were principally distributed in the liver and spleen. The liver particle load accounted for 51%, 24%, and 18% at 90 minutes, 5 days, and 14 days, respectively. A pilot study of particle clearance from blood indicated 50% clearance 33 minutes following the end of particle infusion. Conclusion We concluded that systemic exposure of rats to a single high dose of FDNP-(NV)-Z~800 (60 mg/kg) appeared to be safe and well tolerated over at least 2 weeks. These data suggest that FNDP-(NV) should proceed to preclinical development in the near future.
Otology & Neurotology | 2017
Brandon Kamrava; Jonathan A. Gerstenhaber; Mamta Amin; Yah-el Har-el; Pamela C. Roehm
HYPOTHESIS Custom prostheses could be used to recreate the ossicular chain and improve hearing. BACKGROUND Ossicular discontinuity or fixation occurs in 55% of cases of conductive hearing loss, with most cases involving the incus. Reconstruction has been achieved by a variety of methods; however, there has been little improvement in hearing outcomes in decades. METHODS Precise measurements of anatomic dimensions, weight, and center of gravity were taken from 19 cadaveric incudes. These measurements were combined with measurements from the medical literature and micro-computed tomography (micro-CT) of cadaveric temporal bones to generate a rasterizable incus model. As a proof of concept, incudal replacements including possible anatomic variations were then three-dimensionally (3-D) printed and inserted into a cadaveric temporal bone. RESULTS Our measurements of cadaveric incudes corresponded well with those from the medical literature. These measurements were combined with anatomical information from micro-CT allowing identification of critical features of the incus, which remained constant. Other model features were modified to increase stability and facilitate synthesis, including broadening and thickening of the lenticular process and the incudomalleolar articulation. 3-D printed incudal replacements based on this model readily fit into a cadaveric temporal bone and successfully bridged the gap between malleus and incus. CONCLUSION We have generated a model for custom 3-D synthesis of incudal prostheses. While current 3-D printing in biocompatible materials at the size required is limited, the technology is rapidly advancing, and 3-D printing of incudal replacements with polylactic acid (PLA) is of the correct size and shape.
International Journal of Nanomedicine | 2017
Cezary Marcinkiewicz; Jonathan A. Gerstenhaber; Mark Sternberg; Peter I. Lelkes; Giora Z. Feuerstein
Thromboembolic events (TEE) underwrite key causes of death in developed countries. While advanced imaging technologies such as computed tomography scans serve to diagnose blood clots during acute cardiovascular events, no such technology is available in routine primary care for TEE risk assessment. Here, we describe an imaging platform technology based on bioengineered fluorescent nanodiamond particles (F-NDPs) functionalized with bitistatin (Bit), a disintegrin that specifically binds to the αIIbβ3 integrin, platelet fibrinogen receptor (PFR) on activated platelets. Covalent linkage of purified Bit to F-NDP was concentration-dependent and saturable, as validated by enzyme-linked immunosorbent assay using specific anti-Bit antibodies. F-NDP–Bit interacted with purified PFR, either in immobilized or soluble form. Lotrafiban, a nonpeptide, αIIbβ3 receptor antagonist, specifically blocked F-NDP–Bit–PFR complex formation. Moreover, F-NDP–Bit specifically binds to activated platelets incorporated into a clot generated by thrombin-activated rat platelet-rich plasma (PRP). Our results suggest that engineered F-NDP–Bit particles could serve as noninvasive, “real-time” optical diagnostics for clots present in blood vessels.
International Journal of Nanomedicine | 2017
Jonathan A. Gerstenhaber; Frank C. Barone; Cezary Marcinkiewicz; Jie Li; Aaron O Shiloh; Mark Sternberg; Peter I. Lelkes; Giora Z. Feuerstein
The aim of this feasibility study was to test the ability of fluorescent nanodiamond particles (F-NDP) covalently conjugated with bitistatin (F-NDP-Bit) to detect vascular blood clots in vivo using extracorporeal near-infrared (NIR) imaging. Specifically, we compared NIR fluorescence properties of F-NDP with N-V (F-NDPNV) and N-V-N color centers and sizes (100–10,000 nm). Optimal NIR fluorescence and tissue penetration across biological tissues (rat skin, porcine axillary veins, and skin) was obtained for F-NDPNV with a mean diameter of 700 nm. Intravital imaging (using in vivo imaging system [IVIS]) in vitro revealed that F-NDPNV-loaded glass capillaries could be detected across 6 mm of rat red-muscle barrier and 12 mm of porcine skin, which equals the average vertical distance of a human carotid artery bifurcation from the surface of the adjacent skin (14 mm). In vivo, feasibility was demonstrated in a rat model of occlusive blood clots generated using FeCl3 in the carotid artery bifurcation. Following systemic infusions of F-NDPNV-Bit (3 or 15 mg/kg) via the external carotid artery or femoral vein (N=3), presence of the particles in the thrombi was confirmed both in situ via IVIS, and ex vivo via confocal imaging. The presence of F-NDPNV in the vascular clots was further confirmed by direct counting of fluorescent particles extracted from clots following tissue solubilization. Our data suggest that F-NDPNV-Bit associate with vascular blood clots, presumably by binding of F-NDPNV-Bit to activated platelets within the blood clot. We posit that F-NDPNV-Bit could serve as a noninvasive platform for identification of vascular thrombi using NIR energy monitored by an extracorporeal device.
Wound Medicine | 2014
Yah-el Har-el; Jonathan A. Gerstenhaber; Ross Brodsky; Richard B. Huneke; Peter I. Lelkes
Biomacromolecules | 2013
Jingjia Han; Jonathan A. Gerstenhaber; Philip Lazarovici; Peter I. Lelkes