Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan B. A. Millar is active.

Publication


Featured researches published by Jonathan B. A. Millar.


Current Biology | 2012

Phosphodependent recruitment of Bub1 and Bub3 to Spc7/KNL1 by Mph1 kinase maintains the spindle checkpoint.

Lindsey A. Shepperd; John C. Meadows; Alicja M. Sochaj; Theresa C. Lancaster; Juan Zou; Graham J. Buttrick; Juri Rappsilber; Kevin G. Hardwick; Jonathan B. A. Millar

The spindle assembly checkpoint (SAC) is the major surveillance system that ensures that sister chromatids do not separate until all chromosomes are correctly bioriented during mitosis. Components of the checkpoint include Mad1, Mad2, Mad3 (BubR1), Bub3, and the kinases Bub1, Mph1 (Mps1), and Aurora B. Checkpoint proteins are recruited to kinetochores when individual kinetochores are not bound to spindle microtubules or not under tension. Kinetochore association of Mad2 causes it to undergo a conformational change, which promotes its association to Mad3 and Cdc20 to form the mitotic checkpoint complex (MCC). The MCC inhibits the anaphase-promoting complex/cyclosome (APC/C) until the checkpoint is satisfied. SAC silencing derepresses Cdc20-APC/C activity. This triggers the polyubiquitination of securin and cyclin, which promotes the dissolution of sister chromatid cohesion and mitotic progression. We, and others, recently showed that association of PP1 to the Spc7/Spc105/KNL1 family of kinetochore proteins is necessary to stabilize microtubule-kinetochore attachments and silence the SAC. We now report that phosphorylation of the conserved MELT motifs in Spc7 by Mph1 (Mps1) recruits Bub1 and Bub3 to the kinetochore and that this is required to maintain the SAC signal.


Developmental Cell | 2011

Spindle checkpoint silencing requires association of PP1 to both Spc7 and kinesin-8 motors.

John C. Meadows; Lindsey A. Shepperd; Vincent Vanoosthuyse; Theresa C. Lancaster; Alicja M. Sochaj; Graham J. Buttrick; Kevin G. Hardwick; Jonathan B. A. Millar

The spindle checkpoint is the prime cell-cycle control mechanism that ensures sister chromatids are bioriented before anaphase takes place. Aurora B kinase, the catalytic subunit of the chromosome passenger complex, both destabilizes kinetochore attachments that do not generate tension and simultaneously maintains the spindle checkpoint signal. However, it is unclear how the checkpoint is silenced following chromosome biorientation. We demonstrate that association of type 1 phosphatase (PP1(Dis2)) with both the N terminus of Spc7 and the nonmotor domains of the Klp5-Klp6 (kinesin-8) complex is necessary to counteract Aurora B kinase to efficiently silence the spindle checkpoint. The role of Klp5 and Klp6 in checkpoint silencing is specific to this class of kinesin and independent of their motor activities. These data demonstrate that at least two distinct pools of PP1, one kinetochore associated and the other motor associated, are needed to silence the spindle checkpoint.


Eukaryotic Cell | 2004

The Forkhead Transcription Factor Fkh2 Regulates the Cell Division Cycle of Schizosaccharomyces pombe

Richard Bulmer; Aline Pic-Taylor; Simon K. Whitehall; Kate A. Martin; Jonathan B. A. Millar; Janet Quinn; Brian A. Morgan

ABSTRACT In eukaryotes the regulation of gene expression plays a key role in controlling cell cycle progression. Here, we demonstrate that a forkhead transcription factor, Fkh2, regulates the periodic expression of cdc15+ and spo12+ in the M and G1 phases of the cell division cycle in the fission yeast Schizosaccharomyces pombe. We also show that Fkh2 is important for several cell cycle processes, including cell morphology and cell separation, nuclear structure and migration, and mitotic spindle function. We find that the expression of fkh2+ is itself regulated in a cell cycle-dependent manner in G1 coincident with the expression of cdc18+, a Cdc10-regulated gene. However, fkh2+ expression is independent of Cdc10 function. Fkh2 was found to be phosphorylated during the cell division cycle, with a timing that suggests that this posttranslational modification is important for cdc15+ and spo12+ expression. Related forkhead proteins regulate G2 and M phase-specific gene expression in the evolutionarily distant Saccharomyces cerevisiae, suggesting that these proteins play conserved roles in regulating cell cycle processes in eukaryotes.


Journal of Cell Science | 2007

The Dam1/DASH complex is required for the retrieval of unclustered kinetochores in fission yeast

Alejandro Franco; John C. Meadows; Jonathan B. A. Millar

In fission yeast centromeres cluster at the nuclear envelope in a region underlying the spindle pole body during interphase, an arrangement known as a Rabl configuration. We have identified a strain in which one pair of sister kinetochores is unclustered from the others and binds the nuclear envelope at a point distal to the spindle pole body. We show that during mitosis unclustered kinetochores are captured by intranuclear spindle microtubules which then pull the kinetochores back to one of the two spindle poles before they are bi-oriented on the mitotic spindle. We find that kinetochore retrieval occurs at the depolymerising microtubule plus end and is dependent on the non-essential Dam1/DASH complex. In the absence of Dam1 unclustered kinetochores are captured on the lateral surface of spindle microtubule bundles but poleward kinetochore movement does not occur. These data provide the first direct evidence that the Dam1/DASH complex can couple the force generated by microtubule depolymerisation to direct chromosome movement in vivo.


Developmental Cell | 2015

KNL1-Bubs and RZZ Provide Two Separable Pathways for Checkpoint Activation at Human Kinetochores

Virginia Silió; Andrew D. McAinsh; Jonathan B. A. Millar

The spindle assembly checkpoint (SAC) ensures the accurate segregation of sister chromatids during mitosis. Activation of the SAC occurs through a series of ordered molecular events that result in recruitment of Mad1:Mad2 complexes to improperly attached kinetochores. The current model involves sequential phospho-dependent recruitment of Bub3:Bub1 to KNL1 followed by binding of Mad1:Mad2 to Bub1. Here, we show in non-transformed diploid human cells that the KNL1-Bub3-Bub1 (KBB) pathway is required during normal mitotic progression when kinetochores are misaligned but is nonessential for SAC activation and Mad2 loading when kinetochores are unattached from microtubules. We provide evidence that the Rod-ZW10-Zwilch (RZZ) complex is necessary to recruit Mad1:Mad2 to, and delay anaphase onset in response to, unattached kinetochores independently of the KBB pathway. These data suggest that the KBB and RZZ complexes provide two distinct kinetochore receptors for Mad1:Mad2 and reveal mechanistic differences between SAC activation by unattached and improperly attached kinetochores.


Molecular Biology of the Cell | 2009

Bub3p Facilitates Spindle Checkpoint Silencing in Fission Yeast

Vincent Vanoosthuyse; John C. Meadows; Sjaak van der Sar; Jonathan B. A. Millar; Kevin G. Hardwick

Although critical for spindle checkpoint signaling, the role kinetochores play in anaphase promoting complex (APC) inhibition remains unclear. Here we show that spindle checkpoint proteins are severely depleted from unattached kinetochores in fission yeast cells lacking Bub3p. Surprisingly, a robust mitotic arrest is maintained in the majority of bub3 Delta cells, yet they die, suggesting that Bub3p is essential for successful checkpoint recovery. During recovery, two defects are observed: (1) cells mis-segregate chromosomes and (2) anaphase onset is significantly delayed. We show that Bub3p is required to activate the APC upon inhibition of Aurora kinase activity in checkpoint-arrested cells, suggesting that Bub3p is required for efficient checkpoint silencing downstream of Aurora kinase. Together, these results suggest that spindle checkpoint signals can be amplified in the nucleoplasm, yet kinetochore localization of spindle checkpoint components is required for proper recovery from a spindle checkpoint-dependent arrest.


Chromosome Research | 2011

Ringing the changes: emerging roles for DASH at the kinetochore–microtubule Interface

Graham J. Buttrick; Jonathan B. A. Millar

Regulated interaction between kinetochores and the mitotic spindle is essential for the fidelity of chromosome segregation. Potentially deleterious attachments are corrected during prometaphase and metaphase. Correct attachments must persist during anaphase, when spindle-generated forces separate chromosomes to opposite poles. In yeast, the heterodecameric DASH complex plays a vital pole in maintaining this link. In vitro DASH forms both oligomeric patches and rings that can form load-bearing attachments with the tips of polymerising and depolymerising microtubules. In vivo, DASH localises primarily at the kinetochore, and has a role maintaining correct attachment between spindles and chromosomes in both Saccharomyces cerevisiae and Schizosaccharomyces pombe. Recent work has begun to describe how DASH acts alongside other components of the outer kinetochore to create a dynamic, regulated kinetochore–microtubule interface. Here, we review some of the key experiments into DASH function and discuss their implications for the nature of kinetochore–microtubule attachments in yeast and other organisms.


Antioxidants & Redox Signaling | 2011

Two-Component Mediated Peroxide Sensing and Signal Transduction in Fission Yeast

Janet Quinn; Panagiota Malakasi; Deborah A. Smith; Jill Cheetham; Vicky Buck; Jonathan B. A. Millar; Brian A. Morgan

Two-component related proteins play a major role in regulating the oxidative stress response in the fission yeast, Schizosaccharomyces pombe. For example, the peroxide-sensing Mak2 and Mak3 histidine kinases regulate H(2)O(2)-induced activation of the Sty1 stress-activated protein kinase pathway, and the Skn7-related response regulator transcription factor, Prr1, is essential for activation of the core oxidative stress response genes. Here, we investigate the mechanism by which the S. pombe two-component system senses H(2)O(2), and the potential role of two-component signaling in the regulation of Prr1. Significantly, we demonstrate that PAS and GAF domains present in the Mak2 histidine kinase are essential for redox-sensing and activation of Sty1. In addition, we find that Prr1 is required for the transcriptional response to a wide range of H(2)O(2) concentrations and, furthermore, that two-component regulation of Prr1 is specifically required for the response of cells to high levels of H(2)O(2). Significantly, this provides the first demonstration that the conserved two-component phosphorylation site on Skn7-related proteins influences resistance to oxidative stress and oxidative stress-induced gene expression. Collectively, these data provide new insights into the two-component mediated sensing and signaling mechanisms underlying the response of S. pombe to oxidative stress.


PLOS Genetics | 2013

Monopolin Subunit Csm1 Associates with MIND Complex to Establish Monopolar Attachment of Sister Kinetochores at Meiosis I

Sourav Sarkar; Rajesh T. Shenoy; Jacob Z. Dalgaard; Louise Newnham; Eva Hoffmann; Jonathan B. A. Millar; Prakash Arumugam

Sexually reproducing organisms halve their cellular ploidy during gametogenesis by undergoing a specialized form of cell division known as meiosis. During meiosis, a single round of DNA replication is followed by two rounds of nuclear divisions (referred to as meiosis I and II). While sister kinetochores bind to microtubules emanating from opposite spindle poles during mitosis, they bind to microtubules originating from the same spindle pole during meiosis I. This phenomenon is referred to as mono-orientation and is essential for setting up the reductional mode of chromosome segregation during meiosis I. In budding yeast, mono-orientation depends on a four component protein complex referred to as monopolin which consists of two nucleolar proteins Csm1 and Lrs4, meiosis-specific protein Mam1 of unknown function and casein kinase Hrr25. Monopolin complex binds to kinetochores during meiosis I and prevents bipolar attachments. Although monopolin associates with kinetochores during meiosis I, its binding site(s) on the kinetochore is not known and its mechanism of action has not been established. By carrying out an imaging-based screen we have found that the MIND complex, a component of the central kinetochore, is required for monopolin association with kinetochores during meiosis. Furthermore, we demonstrate that interaction of monopolin subunit Csm1 with the N-terminal domain of MIND complex subunit Dsn1, is essential for both the association of monopolin with kinetochores and for monopolar attachment of sister kinetochores during meiosis I. As such this provides the first functional evidence for a monopolin-binding site at the kinetochore.


PLOS Genetics | 2014

The Rim15-endosulfine-PP2ACdc55 signalling module regulates entry into gametogenesis and quiescence via distinct mechanisms in budding yeast.

Sourav Sarkar; Jacob Z. Dalgaard; Jonathan B. A. Millar; Prakash Arumugam

Quiescence and gametogenesis represent two distinct survival strategies in response to nutrient starvation in budding yeast. Precisely how environmental signals are sensed by yeast cells to trigger quiescence and gametogenesis is not fully understood. A conserved signalling module consisting of Greatwall kinase, Endosulfine and Protein Phosphatase PP2ACdc55 proteins regulates entry into mitosis in Xenopus egg extracts and meiotic maturation in flies. We report here that an analogous signalling module consisting of the serine-threonine kinase Rim15, the Endosulfines Igo1 and Igo2 and the Protein Phosphatase PP2ACdc55, regulates entry into both quiescence and gametogenesis in budding yeast. PP2ACdc55 inhibits entry into gametogenesis and quiescence. Rim15 promotes entry into gametogenesis and quiescence by converting Igo1 into an inhibitor of PP2ACdc55 by phosphorylating at a conserved serine residue. Moreover, we show that the Rim15-Endosulfine-PP2ACdc55 pathway regulates entry into quiescence and gametogenesis by distinct mechanisms. In addition, we show that Igo1 and Igo2 are required for pre-meiotic autophagy but the lack of pre-meiotic autophagy is insufficient to explain the sporulation defect of igo1Δ igo2Δ cells. We propose that the Rim15-Endosulfine-PP2ACdc55 signalling module triggers entry into quiescence and gametogenesis by regulating dephosphorylation of distinct substrates.

Collaboration


Dive into the Jonathan B. A. Millar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge