Jonathan B. Foster
Yale University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jonathan B. Foster.
The Astrophysical Journal | 2005
M. Błazejowski; G. Blaylock; I. H. Bond; S. M. Bradbury; J. H. Buckley; D. A. Carter-Lewis; O. Celik; P. Cogan; W. Cui; M. K. Daniel; C. Duke; Abe D. Falcone; D. J. Fegan; S. J. Fegan; J. P. Finley; L. Fortson; S. Gammell; K. Gibbs; G. G. Gillanders; J. Grube; K. Gutierrez; J. Hall; D. Hanna; J. Holder; D. Horan; B. Humensky; G. E. Kenny; M. Kertzman; D. Kieda; J. Kildea
We report results from an intensive multiwavelength monitoring campaign on the TeV blazar Mrk 421 over the period of 2003-2004. The source was observed simultaneously at TeV energies with the Whipple 10 m telescope and at X-ray energies with the Rossi X-Ray Timing Explorer (RXTE) during each clear night within the Whipple observing windows. Supporting observations were also frequently carried out at optical and radio wavelengths to provide simultaneous or contemporaneous coverages. The large amount of simultaneous data has allowed us to examine the variability of Mrk 421 in detail, including cross-band correlation and broadband spectral variability, over a wide range of flux. The variabilities are generally correlated between the X-ray and gamma-ray bands, although the correlation appears to be fairly loose. The light curves show the presence of flares with varying amplitudes on a wide range of timescales at both X-ray and TeV energies. Of particular interest is the presence of TeV flares that have no coincident counterparts at longer wavelengths, because the phenomenon seems difficult to understand in the context of the proposed emission models for TeV blazars. We have also found that the TeV flux reached its peak days before the X-ray flux did during a giant flare (or outburst) in 2004 (with the peak flux reaching ~135 mcrab in X-rays, as seen by the RXTE ASM, and ~3 crab in gamma rays). Such a difference in the development of the flare presents a further challenge to both the leptonic and hadronic emission models. Mrk 421 varied much less at optical and radio wavelengths. Surprisingly, the normalized variability amplitude in the optical seems to be comparable to that in the radio, perhaps suggesting the presence of different populations of emitting electrons in the jet. The spectral energy distribution of Mrk 421 is seen to vary with flux, with the two characteristic peaks moving toward higher energies at higher fluxes. We have failed to fit the measured spectral energy distributions (SEDs) with a one-zone synchrotron self-Compton model; introducing additional zones greatly improves the fits. We have derived constraints on the physical properties of the X-ray/gamma-ray flaring regions from the observed variability (and SED) of the source. The implications of the results are discussed.
Astrophysical Journal Supplement Series | 2008
Erik Rosolowsky; Jaime E. Pineda; Jonathan B. Foster; Michelle A. Borkin; Jens Kauffmann; P. Caselli; P. C. Myers; Alyssa A. Goodman
We present ammonia observations of 193 dense cores and core candidates in the Perseus molecular cloud made using the Robert F. Byrd Green Bank Telescope. We simultaneously observed the NH3(1,1), NH3(2,2), C2S ( -->21? 10), and C -->342S( -->21? 10) transitions near -->? = 23 GHz for each of the targets with a spectral resolution of -->? v ? 0.024 km s?1. We find ammonia emission associated with nearly all of the (sub)millimeter sources, as well as at several positions with no associated continuum emission. For each detection, we have measured physical properties by fitting a simple model to every spectral line simultaneously. Where appropriate, we have refined the model by accounting for low optical depths, multiple components along the line of sight, and imperfect coupling to the GBT beam. For the cores in Perseus, we find a typical kinetic temperature of -->Tk = 11 K, a typical column density of -->NNH3 ? 1014.5 cm ?2, and velocity dispersions ranging from -->?v = 0.07 to 0.7 km s?1. However, many cores with -->?v > 0.2 km s?1 show evidence for multiple velocity components along the line of sight.
The Astrophysical Journal | 2010
Jaime E. Pineda; Alyssa A. Goodman; Hector G. Arce; P. Caselli; Jonathan B. Foster; Philip C. Myers; Erik Rosolowsky
We present NH3 observations of the B5 region in Perseus obtained with the Green Bank Telescope (GBT). The map covers a region large enough ( 11 0 14 0 ) that it contains the entire dense core observed in previous dust continuum surveys. The dense gas traced by NH3(1,1) covers a much larger area than the dust continuum features found in bolometer observations. The velocity dispersion in the central region of the core is small, presenting subsonic non-thermal motions which are independent of scale. However, it is thanks to the coverage and high sensitivity of the observations that we present the detection, for the first time, of the transition between the coherent core and the dense but more turbulent gas surrounding it. This transition is sharp, increasing the velocity dispersion by a factor of 2 in less than 0.04 pc (the 31 00 beam size at the distance of Perseus, 250 pc). The change in velocity dispersion at the transition is 3 km s -1 pc -1 . The existence of the transition provides a natural definition of dense core: the region with nearly-constant subsonic non-thermal velocity dispersion. From the analysis presented here we can not confirm nor rule out a corresponding sharp density transition. Subject headings: ISM: clouds — stars: formation — ISM: molecules — ISM: individual (Perseus Molecular Complex, B5)
The Astrophysical Journal | 2012
Patricio Sanhueza; James M. Jackson; Jonathan B. Foster; Guido Garay; Andrea Silva; Susanna C. Finn
We have observed 37 Infrared Dark Clouds (IRDCs), containing a total of 159 clumps, in high-density molecular tracers at 3 mm using the 22 m ATNF Mopra Telescope located in Australia. After determining kinematic distances, we eliminated clumps that are not located in IRDCs and clumps with a separation between them of less than one Mopra beam. Our final sample consists of 92 IRDC clumps. The most commonly detected molecular lines are (detection rates higher than 8%) N2H+, HNC, HN13C, HCO+, H13CO+, HCN, C2H, HC3N, HNCO, and SiO. We investigate the behavior of the different molecular tracers and look for chemical variations as a function of an evolutionary sequence based on Spitzer IRAC and MIPS emission. We find that the molecular tracers behave differently through the evolutionary sequence and some of them can be used to yield useful relative age information. The presence of HNC and N2H+ lines does not depend on the star formation activity. On the other hand, HC3N, HNCO, and SiO are predominantly detected in later stages of evolution. Optical depth calculations show that in IRDC clumps the N2H+ line is optically thin, the C2H line is moderately optically thick, and HNC and HCO+ are optically thick. The HCN hyperfine transitions are blended, and, in addition, show self-absorbed line profiles and extended wing emission. These factors combined prevent the use of HCN hyperfine transitions for the calculation of physical parameters. Total column densities of the different molecules, except C2H, increase with the evolutionary stage of the clumps. Molecular abundances increase with the evolutionary stage for N2H+ and HCO+. The N2H+/HCO+ and N2H+/HNC abundance ratios act as chemical clocks, increasing with the evolution of the clumps.
The Astrophysical Journal | 2011
Jaime E. Pineda; Hector G. Arce; Scott Schnee; Alyssa A. Goodman; Tyler L. Bourke; Jonathan B. Foster; Thomas P. Robitaille; Joel D. Tanner; Jens Kauffmann; M. Tafalla; P. Caselli; Guillem Anglada
We present the detection of a dust continuum source at 3 mm (CARMA) and 1.3 mm (Submillimeter Array, SMA), and 12CO (2-1) emission (SMA) toward the L1451-mm dense core. These detections suggest a compact object and an outflow where no point source at mid-infrared wavelengths is detected using Spitzer. An upper limit for the dense core bolometric luminosity of 0.05 L # is obtained. By modeling the broadband spectral energy distribution and the continuum interferometric visibilities simultaneously, we confirm that a central source of heating is needed to explain the observations. This modeling also shows that the data can be well fitted by a dense core with a young stellar object (YSO) and a disk, or by a dense core with a central first hydrostatic core (FHSC). Unfortunately, we are not able to decide between these two models, which produce similar fits. We also detect 12CO (2-1) emission with redshifted and blueshifted emission suggesting the presence of a slow and poorly collimated outflow, in opposition to what is usually found toward YSOs but in agreement with prediction from simulations of an FHSC. This presents the best candidate, so far, for an FHSC, an object that has been identified in simulations of collapsing dense cores. Whatever the true nature of the central object in L1451-mm, this core presents an excellent laboratory to study the earliest phases of low-mass star formation. Based on observations carried out with the IRAM 30 m Telescope, the Submillimeter Array, and CARMA. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). The Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics and is funded by the Smithsonian Institution and the Academia Sinica. Support for CARMA construction was derived from the states of California, Illinois, and Maryland, the James S. McDonnell Foundation, the Gordon and Betty Moore Foundation, the Kenneth T. and Eileen L. Norris Foundation, the University of Chicago, the Associates of the California Institute of Technology, and the National Science Foundation. Ongoing CARMA development and operations are supported by the National Science Foundation under a cooperative agreement and by the CARMA partner universities.
Nature | 2009
Alyssa A. Goodman; Erik Rosolowsky; Michelle A. Borkin; Jonathan B. Foster; Michael Halle; Jens Kauffmann; Jaime E. Pineda
Self-gravity plays a decisive role in the final stages of star formation, where dense cores (size ∼0.1 parsecs) inside molecular clouds collapse to form star-plus-disk systems. But self-gravity’s role at earlier times (and on larger length scales, such as ∼1 parsec) is unclear; some molecular cloud simulations that do not include self-gravity suggest that ‘turbulent fragmentation’ alone is sufficient to create a mass distribution of dense cores that resembles, and sets, the stellar initial mass function. Here we report a ‘dendrogram’ (hierarchical tree-diagram) analysis that reveals that self-gravity plays a significant role over the full range of possible scales traced by 13CO observations in the L1448 molecular cloud, but not everywhere in the observed region. In particular, more than 90 per cent of the compact ‘pre-stellar cores’ traced by peaks of dust emission are projected on the sky within one of the dendrogram’s self-gravitating ‘leaves’. As these peaks mark the locations of already-forming stars, or of those probably about to form, a self-gravitating cocoon seems a critical condition for their existence. Turbulent fragmentation simulations without self-gravity—even of unmagnetized isothermal material—can yield mass and velocity power spectra very similar to what is observed in clouds like L1448. But a dendrogram of such a simulation shows that nearly all the gas in it (much more than in the observations) appears to be self-gravitating. A potentially significant role for gravity in ‘non-self-gravitating’ simulations suggests inconsistency in simulation assumptions and output, and that it is necessary to include self-gravity in any realistic simulation of the star-formation process on subparsec scales.
Astrophysical Journal Supplement Series | 2011
Jonathan B. Foster; James M. Jackson; Peter J. Barnes; Elizabeth Barris; Kate J. Brooks; Maria Cunningham; Susanna C. Finn; G. A. Fuller; S. N. Longmore; Joshua L. Mascoop; Nicolas Peretto; Jill Rathborne; Patricio Sanhueza; F. Schuller; F. Wyrowski
We describe a pilot survey conducted with the Mopra 22 m radio telescope in preparation for the Millimeter Astronomy Legacy Team Survey at 90 GHz (MALT90). We identified 182 candidate dense molecular clumps using six different selection criteria and mapped each source simultaneously in 16 different lines near 90 GHz. We present a summary of the data and describe how the results of the pilot survey shaped the design of the larger MALT90 survey. We motivate our selection of target sources for the main survey based on the pilot detection rates and demonstrate the value of mapping in multiple lines simultaneously at high spectral resolution.
The Astrophysical Journal | 2015
Jill Rathborne; S. N. Longmore; James M. Jackson; J. Alves; John Bally; N. Bastian; Y. Contreras; Jonathan B. Foster; Guido Garay; J. M. D. Kruijssen; L. Testi; Andrew J. Walsh
G0.253+0.016 is a molecular clump that appears to be on the verge of forming a high-mass cluster: its extremely low dust temperature, high mass, and high density, combined with its lack of prevalent star formation, make it an excellent candidate for an Arches-like cluster in a very early stage of formation. Here we present new Atacama Large Millimeter/Sub-millimeter Array observations of its small-scale (∼0.07 pc) 3 mm dust continuum and molecular line emission from 17 different species that probe a range of distinct physical and chemical conditions. The data reveal a complex network of emission features with a complicated velocity structure: there is emission on all spatial scales, the morphology of which ranges from small, compact regions to extended, filamentary structures that are seen in both emission and absorption. The dust column density is well traced by molecules with higher excitation energies and critical densities, consistent with a clump that has a denser interior. A statistical analysis supports the idea that turbulence shapes the observed gas structure within G0.253+0.016. We find a clear break in the turbulent power spectrum derived from the optically thin dust continuum emission at a spatial scale of ∼0.1 pc, which may correspond to the spatial scale at which gravity has overcome the thermal pressure. We suggest that G0.253+0.016 is on the verge of forming a cluster from hierarchical, filamentary structures that arise from a highly turbulent medium. Although the stellar distribution within high-mass Arches-like clusters is compact, centrally condensed, and smooth, the observed gas distribution within G0.253+0.016 is extended, with no high-mass central concentration, and has a complex, hierarchical structure. If this clump gives rise to a high-mass cluster and its stars are formed from this initially hierarchical gas structure, then the resulting cluster must evolve into a centrally condensed structure via a dynamical process.
The Astrophysical Journal | 2014
Jill Rathborne; S. N. Longmore; James M. Jackson; J. M. D. Kruijssen; J. Alves; John Bally; N. Bastian; Y. Contreras; Jonathan B. Foster; Guido Garay; L. Testi; Andrew J. Walsh
Despite the simplicity of theoretical models of supersonically turbulent, isothermal media, their predictions successfully match the observed gas structure and star formation activity within low-pressure (P=k < 105 K cm
The Astrophysical Journal | 2015
Jonathan B. Foster; Michiel Cottaar; Kevin R. Covey; Hector G. Arce; Michael R. Meyer; David L. Nidever; Keivan G. Stassun; Jonathan C. Tan; S. Drew Chojnowski; Nicola Da Rio; Kevin M. Flaherty; Luisa Marie Rebull; Peter M. Frinchaboy; Steven R. Majewski; Michael F. Skrutskie; John C. Wilson; Gail Zasowski
The initial velocity dispersion of newborn stars is a major unconstrained aspect of star formation theory. Using near-infrared spectra obtained with the APOGEE spectrograph, we show that the velocity dispersion of young (1-2 Myr) stars in NGC 1333 is 0.92 ± 0.12 km s^(–1) after correcting for measurement uncertainties and the effect of binaries. This velocity dispersion is consistent with the virial velocity of the region and the diffuse gas velocity dispersion, but significantly larger than the velocity dispersion of the dense, star-forming cores, which have a subvirial velocity dispersion of 0.5 km s^(–1). Since the NGC 1333 cluster is dynamically young and deeply embedded, this measurement provides a strong constraint on the initial velocity dispersion of newly formed stars. We propose that the difference in velocity dispersion between stars and dense cores may be due to the influence of a 70 μG magnetic field acting on the dense cores or be the signature of a cluster with initial substructure undergoing global collapse.
Collaboration
Dive into the Jonathan B. Foster's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputs