Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan B. Houze is active.

Publication


Featured researches published by Jonathan B. Houze.


Journal of Lipid Research | 2005

Effects of peroxisome proliferator-activated receptor alpha/delta agonists on HDL-cholesterol in vervet monkeys.

Jeanne M. Wallace; Margrit Schwarz; Peter Coward; Jonathan B. Houze; Janet K. Sawyer; Kathryn L. Kelley; Anne Chai; Lawrence L. Rudel

The objective of this study was to demonstrate the efficacy of a novel peroxisome proliferator-activated receptor (PPAR) agonist and known PPARα and PPARδ agonists to increase HDL-cholesterol (HDL-C) in the St. Kitts vervet, a nonhuman primate model of atherosclerosis. Four groups (n = 6) were studied and each group was assigned one of the following “treatments”: a) vehicle only (vehicle); b) the PPARδ selective agonist GW501516 (GW); c) the PPARα/δ agonist T913659 (T659); and d) the PPARα agonist TriCor® (fenofibrate). No statistically significant changes were seen in body weight, total plasma cholesterol, plasma triglycerides, VLDL-C, LDL-C, or apolipoprotein B (apoB) concentrations. Each of the PPARα and PPARδ agonists investigated in this study increased plasma HDL-C, apoA-I, and apoA-II concentrations and increased HDL particle size in St. Kitts vervets. The maximum percentage increase in HDL-C from baseline for each group was as follows: vehicle, 5%; GW, 43%; T659, 43%; and fenofibrate, 20%. Treatment with GW and T659 resulted in an increase in medium-sized HDL particles, whereas fenofibrate showed increases in large HDL particles. These data provide additional evidence that PPARα and PPARδ agonists (both mixed and selective) have beneficial effects on HDL-C in these experimental primates.


PLOS ONE | 2012

A Potent Class of GPR40 Full Agonists Engages the EnteroInsular Axis to Promote Glucose Control in Rodents

Jian Luo; Gayathri Swaminath; Sean P. Brown; Jane Zhang; Qi Guo; Michael Chen; Kathy Nguyen; Thanhvien Tran; Lynn Miao; Paul John Dransfield; Marc Vimolratana; Jonathan B. Houze; Simon Wong; Maria M. Toteva; Bei Shan; Frank Li; Run Zhuang; Daniel C.-H. Lin

Type 2 diabetes is characterized by impaired glucose homeostasis due to defects in insulin secretion, insulin resistance and the incretin response. GPR40 (FFAR1 or FFA1) is a G-protein-coupled receptor (GPCR), primarily expressed in insulin-producing pancreatic β-cells and incretin-producing enteroendocrine cells of the small intestine. Several GPR40 agonists, including AMG 837 and TAK-875, have been disclosed, but no GPR40 synthetic agonists have been reported that engage both the insulinogenic and incretinogenic axes. In this report we provide a molecular explanation and describe the discovery of a unique and potent class of GPR40 full agonists that engages the enteroinsular axis to promote dramatic improvement in glucose control in rodents. GPR40 full agonists AM-1638 and AM-6226 stimulate GLP-1 and GIP secretion from intestinal enteroendocrine cells and increase GSIS from pancreatic islets, leading to enhanced glucose control in the high fat fed, streptozotocin treated and NONcNZO10/LtJ mouse models of type 2 diabetes. The improvement in hyperglycemia by AM-1638 was reduced in the presence of the GLP-1 receptor antagonist Ex(9–39)NH2.


Journal of Medicinal Chemistry | 2014

Discovery of AMG 232, a Potent, Selective, and Orally Bioavailable MDM2–p53 Inhibitor in Clinical Development

Daqing Sun; Zhihong Li; Yosup Rew; Michael W. Gribble; Michael D. Bartberger; Hilary P. Beck; Jude Canon; Ada Chen; Xiaoqi Chen; David Chow; Jeffrey Deignan; Jason Duquette; John Eksterowicz; Benjamin Fisher; Brian M. Fox; Jiasheng Fu; Ana Z. Gonzalez; Felix Gonzalez-Lopez de Turiso; Jonathan B. Houze; Xin Huang; Min Jiang; Lixia Jin; Frank Kayser; Jiwen Liu; Mei-Chu Lo; Alexander M. Long; Brian Lucas; Lawrence R. McGee; Joel McIntosh; Jeff Mihalic

We recently reported the discovery of AM-8553 (1), a potent and selective piperidinone inhibitor of the MDM2-p53 interaction. Continued research investigation of the N-alkyl substituent of this series, focused in particular on a previously underutilized interaction in a shallow cleft on the MDM2 surface, led to the discovery of a one-carbon tethered sulfone which gave rise to substantial improvements in biochemical and cellular potency. Further investigation produced AMG 232 (2), which is currently being evaluated in human clinical trials for the treatment of cancer. Compound 2 is an extremely potent MDM2 inhibitor (SPR KD = 0.045 nM, SJSA-1 EdU IC50 = 9.1 nM), with remarkable pharmacokinetic properties and in vivo antitumor activity in the SJSA-1 osteosarcoma xenograft model (ED50 = 9.1 mg/kg).


Molecular Pharmacology | 2012

Identification and Pharmacological Characterization of Multiple Allosteric Binding Sites on the Free Fatty Acid 1 Receptor

Daniel C.-H. Lin; Qi Guo; Jian Luo; Jane Zhang; Kathy Nguyen; Michael Chen; Thanh Tran; Paul John Dransfield; Sean P. Brown; Jonathan B. Houze; Marc Vimolratana; Xian Yun Jiao; Yingcai Wang; Nigel J.M. Birdsall; Gayathri Swaminath

Activation of FFA1 (GPR40), a member of G protein-coupling receptor family A, is mediated by medium- and long-chain fatty acids and leads to amplification of glucose-stimulated insulin secretion, suggesting a potential role for free fatty acid 1 (FFA1) as a target for type 2 diabetes. It was assumed previously that there is a single binding site for fatty acids and synthetic FFA1 agonists. However, using members of two chemical series of partial and full agonists that have been identified, radioligand binding interaction studies revealed that the full agonists do not bind to the same site as the partial agonists but exhibit positive heterotropic cooperativity. Analysis of functional data reveals positive functional cooperativity between the full agonists and partial agonists in various functional assays (in vitro and ex vivo) and also in vivo. Furthermore, the endogenous fatty acid docosahexaenoic acid (DHA) shows negative or neutral cooperativity with members of both series of agonists in binding assays but displays positive cooperativity in functional assays. Another synthetic agonist is allosteric with members of both agonist series, but apparently competitive with DHA. Therefore, there appear to be three allosterically linked binding sites on FFA1 with agonists specific for each of these sites. Activation of free fatty acid 1 receptor (FFAR1) by each of these agonists is differentially affected by mutations of two arginine residues, previously found to be important for FFAR1 binding and activation. These ligands with their high potencies and strong positive functional cooperativity with endogenous fatty acids, demonstrated in vitro and in vivo, have the potential to deliver therapeutic benefits.


PLOS ONE | 2011

AMG 837: A Novel GPR40/FFA1 Agonist that Enhances Insulin Secretion and Lowers Glucose Levels in Rodents

Daniel C.-H. Lin; Jane Zhang; Run Zhuang; Frank Li; Kathy Nguyen; Michael Chen; Thanhvien Tran; Edwin Lopez; Jenny Ying-Lin Lu; Xiaoyan Nina Li; Liang Tang; George Tonn; Gayathri Swaminath; Jeff D. Reagan; Jin-Long Chen; Hui Tian; Yi-Jyun Lin; Jonathan B. Houze; Jian Luo

Agonists of GPR40 (FFA1) have been proposed as a means to treat type 2 diabetes. Through lead optimization of a high throughput screening hit, we have identified a novel GPR40 agonist called AMG 837. The objective of these studies was to understand the preclinical pharmacological properties of AMG 837. The activity of AMG 837 on GPR40 was characterized through GTPγS binding, inositol phosphate accumulation and Ca2+ flux assays. Activity of AMG 837 on insulin release was assessed on isolated primary mouse islets. To determine the anti-diabetic activity of AMG 837 in vivo, we tested AMG 837 using a glucose tolerance test in normal Sprague-Dawley rats and obese Zucker fatty rats. AMG 837 was a potent partial agonist in the calcium flux assay on the GPR40 receptor and potentiated glucose stimulated insulin secretion in vitro and in vivo. Acute administration of AMG 837 lowered glucose excursions and increased glucose stimulated insulin secretion during glucose tolerance tests in both normal and Zucker fatty rats. The improvement in glucose excursions persisted following daily dosing of AMG 837 for 21-days in Zucker fatty rats. Preclinical studies demonstrated that AMG 837 was a potent GPR40 partial agonist which lowered post-prandial glucose levels. These studies support the potential utility of AMG 837 for the treatment of type 2 diabetes.


Molecular and Cellular Endocrinology | 2013

Activation of FFA1 mediates GLP-1 secretion in mice. Evidence for allosterism at FFA1.

Yumei Xiong; Gayathri Swaminath; Qiong Cao; Li Yang; Qi Guo; Heather Salomonis; Jenny Ying-Lin Lu; Jonathan B. Houze; Paul John Dransfield; Yingcai Wang; Jiwen Liu; Simon Wong; Ralf Schwandner; Franziska Steger; Helene Baribault; Lily Liu; Suzanne Coberly; Lynn Miao; Jane Zhang; Daniel C.-H. Lin; Margrit Schwarz

FFA1 (GPR40) and GPR120 are G-protein-coupled receptors activated by long-chain fatty acids. FFA1 is expressed in pancreatic β-cells, where it regulates glucose-dependent insulin secretion, and GPR120 has been implicated in mediating GLP-1 secretion. We show here that FFA1 co-localizes with GLP-1 in enteroendocrine cells and plays a critical role in glucose management by mediating GLP-1 secretion in vivo. Corn oil induces GLP-1 secretion in wild type mice and in GPR120-/- mice, but not in FFA1-/- mice. α-Linolenic acid, an endogenous ligand of FFA1, induces GLP-1 secretion in GLUTag cells and in primary fetal mouse intestinal cells. Synthetic partial FFA1 agonists do not stimulate GLP-1 secretion in mice, but partial and full agonists combined function cooperatively to enhance receptor activation and GLP-1 secretion both in vitro and in vivo. We conclude that allosterism at FFA1 can contribute to postprandial glucose management by stimulating insulin secretion via an extrapancreatic mechanism of action, and that GPR120 in GLP-1 secretion requires further investigation.


ACS Medicinal Chemistry Letters | 2013

Discovery and Optimization of Potent GPR40 Full Agonists Containing Tricyclic Spirocycles.

Yingcai Wang; Jiwen Liu; Paul John Dransfield; Liusheng Zhu; Zhongyu Wang; Xiaohui Du; Xianyun Jiao; Yongli Su; An-Rong Li; Sean P. Brown; Annie Kasparian; Marc Vimolratana; Ming Yu; Vatee Pattaropong; Jonathan B. Houze; Gayathri Swaminath; Thanhvien Tran; Khanh Nguyen; Qi Guo; Jane Zhang; Run Zhuang; Frank Li; Lynn Miao; Michael D. Bartberger; Tiffany L. Correll; David Chow; Simon Wong; Jian Luo; Daniel C.-H. Lin; Julio C. Medina

GPR40 (FFAR1 or FFA1) is a target of high interest being pursued to treat type II diabetes due to its unique mechanism leading to little risk of hypoglycemia. We recently reported the discovery of AM-1638 (2), a potent full agonist of GPR40. In this report, we present the discovery of GPR40 full agonists containing conformationally constrained tricyclic spirocycles and their structure-activity relationships leading to more potent agonists such as AM-5262 (26) with improved rat PK profile and general selectivity profile. AM-5262 enhanced glucose stimulated insulin secretion (mouse and human islets) and improved glucose homeostasis in vivo (OGTT in HF/STZ mice) when compared to AM-1638.


ACS Medicinal Chemistry Letters | 2012

Discovery of AM-1638: A Potent and Orally Bioavailable GPR40/FFA1 Full Agonist

Sean P. Brown; Paul John Dransfield; Marc Vimolratana; Xianyun Jiao; Liusheng Zhu; Vatee Pattaropong; Jinqian Liu; Jian Luo; Jane Zhang; Simon Wong; Run Zhuang; Qi Guo; Frank Li; Julio C. Medina; Gayathri Swaminath; Daniel C.-H. Lin; Jonathan B. Houze

GPR40 (FFA1) is a G-protein-coupled receptor, primarily expressed in pancreatic islets, the activation of which elicits increased insulin secretion only in the presence of elevated glucose levels. A potent, orally bioavailable small molecule GPR40 agonist is hypothesized to be an effective antidiabetic posing little or no risk of hypoglycemia. We recently reported the discovery of AMG 837 (1), a potent partial agonist of GPR40. Herein, we present the optimization from the GPR40 partial agonist 1 to the structurally and pharmacologically distinct GPR40 full agonist AM-1638 (21). Moreover, we demonstrate the improved in vivo efficacy that GPR40 full agonist 21 exhibits in BDF/DIO mice as compared to partial agonist 1.


Journal of Medicinal Chemistry | 2014

Selective and potent morpholinone inhibitors of the MDM2-p53 protein-protein interaction.

Ana Z. Gonzalez; John Eksterowicz; Michael D. Bartberger; Hilary P. Beck; Jude Canon; Ada Chen; David Chow; Jason Duquette; Brian M. Fox; Jiasheng Fu; Xin Huang; Jonathan B. Houze; Lixia Jin; Yihong Li; Zhihong Li; Yun Ling; Mei-Chu Lo; Alexander M. Long; Lawrence R. McGee; Joel McIntosh; Dustin L. McMinn; Jonathan D. Oliner; Tao Osgood; Yosup Rew; Anne Y. Saiki; Paul Shaffer; Sarah Wortman; Peter Yakowec; Xuelei Yan; Qiuping Ye

We previously reported the discovery of AMG 232, a highly potent and selective piperidinone inhibitor of the MDM2-p53 interaction. Our continued search for potent and diverse analogues led to the discovery of novel morpholinone MDM2 inhibitors. This change to a morpholinone core has a significant impact on both potency and metabolic stability compared to the piperidinone series. Within this morpholinone series, AM-8735 emerged as an inhibitor with remarkable biochemical potency (HTRF IC50 = 0.4 nM) and cellular potency (SJSA-1 EdU IC50 = 25 nM), as well as pharmacokinetic properties. Compound 4 also shows excellent antitumor activity in the SJSA-1 osteosarcoma xenograft model with an ED50 of 41 mg/kg. Lead optimization toward the discovery of this inhibitor as well as key differences between the morpholinone and the piperidinone series will be described herein.


Journal of Medicinal Chemistry | 2014

Novel Inhibitors of the MDM2-p53 Interaction Featuring Hydrogen Bond Acceptors as Carboxylic Acid Isosteres.

Ana Z. Gonzalez; Zhihong Li; Hilary P. Beck; Jude Canon; Ada Chen; David Chow; Jason Duquette; John Eksterowicz; Brian M. Fox; Jiasheng Fu; Xin Huang; Jonathan B. Houze; Lixia Jin; Yihong Li; Yun Ling; Mei-Chu Lo; Alexander M. Long; Lawrence R. McGee; Joel McIntosh; Jonathan D. Oliner; Tao Osgood; Yosup Rew; Anne Y. Saiki; Paul Shaffer; Sarah Wortman; Peter Yakowec; Xuelei Yan; Qiuping Ye; Dongyin Yu; Xiaoning Zhao

We previously reported the discovery of potent and selective morpholinone and piperidinone inhibitors of the MDM2-p53 interaction. These inhibitors have in common a carboxylic acid moiety that engages in an electrostatic interaction with MDM2-His96. Our continued search for potent and diverse inhibitors led to the discovery of novel replacements for these acids uncovering new interactions with the MDM2 protein. In particular, using pyridine or thiazole as isosteres of the carboxylic acid moiety resulted in very potent analogues. From these, AM-6761 (4) emerged as a potent inhibitor with remarkable biochemical (HTRF IC50 = 0.1 nM) and cellular potency (SJSA-1 EdU IC50 = 16 nM), as well as favorable pharmacokinetic properties. Compound 4 also shows excellent antitumor activity in the SJSA-1 osteosarcoma xenograft model with an ED50 of 11 mg/kg. Optimization efforts toward the discovery of these inhibitors as well as the new interactions observed with the MDM2 protein are described herein.

Collaboration


Dive into the Jonathan B. Houze's collaboration.

Researchain Logo
Decentralizing Knowledge