Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaohui Du is active.

Publication


Featured researches published by Xiaohui Du.


Biochemical and Biophysical Research Communications | 2010

microRNA-195 promotes apoptosis and suppresses tumorigenicity of human colorectal cancer cells

Lin Liu; Lin Chen; Yingxin Xu; Rong Li; Xiaohui Du

Deregulated microRNAs and their roles in cancer development have attracted much attention. In the present study, we analyzed the roles of miR-195 in colorectal cancer pathogenesis, as its participation in some other types of cancer has been suggested by previous reports. By comparing miR-195 expression in 81 human colorectal cancer tissues and matched non-neoplastic mucosa tissues, we found that miR-195 was downregulated in cancer tissues. And restoration of miR-195 in colorectal cancer cell lines HT29 and LoVo could reduce cell viability, promote cell apoptosis and suppress tumorigenicity. Moreover, important antiapoptotic Bcl-2 was identified to be directly targeted by miR-195, and miR-195 was further suggested to exert its proapoptotic function mainly through targeting Bcl-2 expression. Taken together, our study provides important roles of miR-195 in colorectal cancer pathogenesis and implicates its potential application in cancer therapy.


Carcinogenesis | 2012

microRNA-365, down-regulated in colon cancer, inhibits cell cycle progression and promotes apoptosis of colon cancer cells by probably targeting Cyclin D1 and Bcl-2

Jing Nie; Lin Liu; Wei Zheng; Lin Chen; Xin Wu; Yingxin Xu; Xiaohui Du; Weidong Han

Deregulated microRNAs participate in carcinogenesis and cancer progression, but their roles in cancer development remain unclear. In this study, miR-365 expression was found to be downregulated in human colon cancer tissues as compared with that in matched non-neoplastic mucosa tissues, and its downregulation was correlated with cancer progression and poor survival in colon cancer patients. Functional studies revealed that restoration of miR-365 expression inhibited cell cycle progression, promoted 5-fluorouracil-induced apoptosis and repressed tumorigenicity in colon cancer cell lines. Furthermore, bioinformatic prediction and experimental validation were used to identify miR-365 target genes and indicated that the antitumor effects of miR-365 were probably mediated by its targeting and repression of Cyclin D1 and Bcl-2 expression, thus inhibiting cell cycle progression and promoting apoptosis. These results suggest that downregulation of miR-365 in colon cancer may have potential applications in prognosis prediction and gene therapy in colon cancer patients.


PLOS ONE | 2013

The oncogenic role of microRNA-130a/301a/454 in human colorectal cancer via targeting Smad4 expression.

Lin Liu; Jing Nie; Lin Chen; Guanglong Dong; Xiaohui Du; Xin Wu; Yun Tang; Weidong Han

Transforming growth factor (TGF)-β/Smad signaling plays an important role in colon cancer development, progression and metastasis. In this study we demonstrated that the microRNA-130a/301a/454 family is up-regulated in colon cancer tissues compared to paired adjacent normal mucosa, which share the same 3′-untranslational region (3′-UTR) binding seed sequence and are predicated to target Smad4. In colorectal cancer HCT116 and SW480 cells, overexpression of miRNA-130a/301a/454 mimics enhances cell proliferation and migration, while inhibitors of these miRNAs affect cell survival. The biological function of miRNA-130a/301a/454 on colon cancer cells is likely mediated by suppression of Smad4, and the up-regulation of the miRNAs is correlated with Smad4 down-regulation in human colon cancers. Collectively, these results suggest that miRNA-130a/301a/454 are novel oncogenic miRNAs contributing to colon tumorigenesis by regulating TGF-β/Smad signaling, which may have potential application in cancer therapy.


Oncology Reports | 2012

In vivo distribution and antitumor effect of infused immune cells in a gastric cancer model

Xiaohui Du; Runsen Jin; Ning Ning; Li Li; Quansheng Wang; Wentao Liang; Juchao Liu; Yingxin Xu

Adoptive cellular transfer has been employed for cancer immunotherapy, including patients with gastric cancer. However, little is known about the distribution of effector cells after their injection via different pathways. In this study, we used human gastric cancer cells (BGC823) tagged with enhanced green fluorescent protein (EGPF) to establish a subcutaneous gastric cancer model in nude mice. Cytokine-induced killer (CIK) cells and cytotoxic T lymphocytes (CTLs) were generated from human peripheral blood and labeled with red fluorescent PKH26. A portion of CIK cells was armed with CEA/CD3-bispecific single-chain antibody. When CIK cells were injected into nude mice with established subcutaneous gastric cancer via peritumoral (p.t.), intravenous (i.v.) and intraperitoneal (i.p.) infusion respectively, the distribution of cells was observed using a live fluorescence imaging system. We found that only a very small number of CIK cells could travel to the tumor site after i.p. or i.v. infusion, and they inhibited subcutaneous tumor growth in vivo only immediately following injection. In contrast, p.t. injection resulted in a significantly higher accumulation of CIK cells at the tumor site for 48 hours and mediated the greatest tumor inhibition compared with the other two injection methods. In addition, we compared the antitumor activity of CIK, CEA/CD3-bscAb-CIK and CTL cells in vitro and in vivo after p.t. injection. Among the three types of immune cells, CTLs demonstrated the strongest antitumor activity both in vitro and in vivo. CEA/CD3-bispecific single chain antibody could effectively link T lymphocytes and tumor cells expressing CEA, and resulted in significantly higher accumulation of CIK cells at the tumor site compared with the parental CIK cells. This study indicates that peritumoral injection of immune effector cells by minimally invasive surgical procedures represents an effective delivery method of adoptive cellular immunotherapy. Tumor-specific immune cells, such as CTLs, are a better choice of effector cells than CIKs in cellular immunotherapy. Furthermore, CD3+ immune cells armed with the CEA/CD3-bispecific single chain antibody could more effectively travel to and accumulate at the site of tumors expressing CEA, such as gastric cancer.


Tumor Biology | 2014

Combination of E2F-1 promoter-regulated oncolytic adenovirus and cytokine-induced killer cells enhances the antitumor effects in an orthotopic rectal cancer model

Yang Yan; Yingxin Xu; Yunshan Zhao; Li Li; Peiming Sun; Hai‑Liang Liu; Qinghao Fan; Kai Liang; Wentao Liang; Huiwei Sun; Xiaohui Du; Rong Li

Due to the anatomical structure of the rectum, the treatment of rectal cancer remains challenging. Ad-E2F, an oncolytic adenovirus containing the E2F-1 promoter, can selectively replicate within and kill cancer cells derived from solid tumors. Thus, this virus provides a novel approach for the treatment of rectal cancer. Given the poor efficacy and possible adverse reactions that arise from the use of oncolytic virus alone and the results of our analysis of the efficacy of Ad-E2F in the treatment of rectal cancer, we investigated the use of oncolytic adenovirus in combination with adoptive immunotherapy using cytokine-induced killer (CIK) cells as a therapeutic treatment for rectal cancer. Our results illustrated that E2F-1 gene expression is higher in rectal cancer tissue than in normal tissue. Furthermore, the designed oncolytic adenovirus Ad-E2F is capable of selectively killing colorectal cell lines but has no significant effect on CIK cells. The results of in vitro and in vivo experiments demonstrated that combined therapy with Ad-E2F and CIK cells produce stronger antitumor effects than the administration of Ad-E2F or CIK cells alone. For low rectal cancers that are suitable for intratumoral injection, local injections of oncolytic viruses in combination with CIK cell-based adoptive immunotherapy may be suitable as a novel comprehensive therapeutic approach.


Tumor Biology | 2015

Combined therapy with CTL cells and oncolytic adenovirus expressing IL-15-induced enhanced antitumor activity

Yang Yan; Songyan Li; Tingting Jia; Xiaohui Du; Yingxin Xu; Yunshan Zhao; Li Li; Kai Liang; Wentao Liang; Huiwei Sun; Rong Li

Addition of immunoregulation factor to an oncolytic adenovirus being constructed is a developmental step in tumor gene therapy; however, cytokine IL-15 has not been frequently used as a potential cancer therapy agent. Here, we constructed an E2F-1 promoter oncolytic adenovirus based on type 5 adenovirus, which induces viral replication and proliferation in targeted tumor cells. We inserted the IL-15 gene into the E3 region of the model and found that human IL-15 expressing oncolytic adenovirus (Ad-E2F/IL15) shows a more intense antitumor effect than simple oncolytic viruses (Ad-E2F) do. Precisely because IL-15 can activate natural killer (NK) cells, CD8+T cells, and other immune cells, in antitumor therapy, Ad-E2F/IL15 was used in combination with cytotoxic T lymphocytes (CTL) to create a virus that can induce IL-15 gene expression while lysing tumors and stimulating the activity and function of adoptive immune cells. The therapeutic effect of this therapy is clearly stronger than that of a single application of oncolytic viruses or CTL, and hence, it could be a potential new tumor therapy.


Oncology Letters | 2013

An engineered three-dimensional gastric tumor culture model for evaluating the antitumor activity of immune cells in vitro.

Peiming Sun; Yingxin Xu; Xiaohui Du; Ning Ning; Huiwei Sun; Wentao Liang; Rong Li

Monolayer tumor culture models have been used for evaluating the antitumor activity of immune cells in vitro. However, their value in this research is limited. We used human gastric cancer cells (BGC823) and collagen hydrogel as a matrix to establish an engineered three-dimensional (3-D) tumor culture model in vitro. Tumor cells grew in 3-D culture and formed spheroids in the collagen matrix. Evaluation of the antitumor activity of cytokine-induced killer (CIK) cells revealed that, compared with the 2-D cell culture models, CIK cells migrated towards the tumor cells and destroyed the spheroids and tumor cells in the engineered 3-D tumor culture model. The cytotoxicity of CIK cells against the tumor cells in the engineered 3-D tumor culture model was lower than that in 2-D tumor culture models at 12–36 h post-interaction, but there was no significant difference in the cytotoxicity at later time points. Further analysis indicated that dendritic cell-activated CIK cells had a significantly higher level of cytotoxicity against tumor cells, compared with CIK and anti-CEA/CD3-treated CIK cells, in the engineered 3-D tumor culture model. Our data suggest that the engineered 3-D gastric tumor culture model may better mimic the interaction of immune cells with tumor cells in vivo than the 2-D tumor culture models, and may be used for evaluating the antitumor activity of immune cells in vitro.


Oncology Reports | 2018

MicroRNA-150 inhibits the proliferation and metastasis potential of colorectal cancer cells by targeting iASPP

Chen Li; Xiaohui Du; Shaoyou Xia; Lin Chen

In the present study, the function of miR-150 and its downstream target iASPP in the growth and metastasis of colorectal cancer (CRC) cells was investigated. The expression of miR-150 and iASPP was first investigated in clinical CRC samples. Subsequently, the effects of miR-150 overexpression and iASPP inhibition on cell viability, cell cycle distribution, apoptosis, migration and invasion were detected with CCK-8, flow cytometry, scratch and Transwell assays. The interaction between miR-150 and iASPP was confirmed using a dual-luciferase assay. Subsequently, the key role of iASPP in the anti-CRC function of miR-150 was assessed by inducing the expression of the gene in miR-150 overexpressed SW480 cells. In clinical samples, the level of miR-150 was downregulated, while iASPP was induced. Enforced expression of miR-150 decreased the viability, induced G1 cell cycle arrest and apoptosis, and inhibited the migration and invasion of SW480 cells. Knockdown of iASPP exerted a similar effect on SW480 cells to that of the overexpression of miR-150. Dual-luciferase assay demonstrated that miR-150 directly bound to iASPP and inhibited its transcription. The function of miR-150 depended on the inhibition of iASPP; induced expression of iASPP in miR-150-knockdown SW480 and HCT116 cells restored cell viability, migration and invasion while inhibiting G1 cell cycle arrest and apoptosis. Increased expression of miR-150 suppressed viability, proliferation, migration and invasion of SW480 cells. Furthermore, iASPP was a direct target of miR-150 and played a key role in its anti-CRC function. miR-150 may be a promising predictor of prognosis in CRC patients.


Oncology Letters | 2018

Improving immunotherapy for colorectal cancer using dendritic cells combined with anti-programmed death-ligand in vitro

Zilong Hu; Yue Ma; Zhiyang Shang; Shidong Hu; Kai Liang; Wentao Liang; Xiaowei Xing; Yufeng Wang; Xiaohui Du

Monoclonal antibodies recognizing programmed death-ligand 1 (PD-L1) have been used for the clinical treatment of diverse tumor types as a form of immune checkpoint inhibitor, with a favorable therapeutic effect. Dendritic cells (DCs) are potent antigen-presenting cells that serve a pivotal role in the activation of T cells, particularly cytotoxic T lymphocytes (CTLs). DC vaccines loaded with tumor antigens, DC-CTLs and activated T cells have been revealed to be a safe and effective treatment approach against colorectal cancer within a clinical setting. In addition to tumor cells, PD-L1 is also highly expressed on DCs. As research examining the association between anti-PD-L1 and DCs is lacking, the present study compared the expression of PD-L1 on DCs in the peripheral blood of healthy donors and patients with colorectal cancer. Following the application of anti-PD-L1, the DC phenotypes, function of DC-mediated T cell induction and the cytotoxicity of CTLs were investigated by flow cytometry. The present study revealed that treatment with anti-PD-L1 may promote the maturation of DCs and enhance the functionality of the DC1 subtype. It may also increase the number of CTLs that are activated and produce CTL cells with more potent anti-tumor activity. Therefore, the creation of DC vaccines in conjunction with anti-PD-L1 may be an effective future treatment strategy for patients with colorectal cancer.


Oncology Letters | 2018

Accumulation and suppressive function of regulatory T cells in malignant ascites: Reducing their suppressive function using arsenic trioxide in vitro

Zilong Hu; Shidong Hu; Youjun Wu; Songyan Li; Changzheng He; Xiaowei Xing; Yufeng Wang; Xiaohui Du

Although adoptive cell therapy (ACT) has demonstrated effective and remarkable clinical responses in several studies, this approach does not lead to objective clinical responses in all cases. The function of ACT is often compromised by various tumor escape mechanisms, including the accumulation of immunoregulatory cells. As a result of peritoneal metastasis in the terminal stage, malignant ascites fluid lacks effectiveness and is a poor prognostic factor for gastric cancer. The present study assessed T-cell subsets in lymphocytes derived from malignant ascites, and investigated the effects of arsenic trioxide (As2O3) on regulatory T cells (Tregs) and ascites-derived tumor-infiltrating lymphocytes (TILs) in vitro. In this study, lymphocytes were separated from malignant ascites and T-cell subsets were detected via flow cytometry. Forkhead box P3 (FoxP3) expression was assessed by immunohistochemistry and reverse transcription-quantitative polymerase chain reaction. In addition, cytokines, including interleukin-10 (IL-10), transforming growth factor-β (TGF-β), and interferon-γ (IFN-γ), were measured by enzyme-linked immunosorbent assay (ELISA). Abundant Tregs were observed in ascites lymphocytes, which and exhibited a significantly increased frequency compared with that in the peripheral blood of patients. Furthermore, As2O3 treatment significantly reduced Treg numbers and Foxp3 mRNA levels in vitro (P<0.05). IFN-γ levels in the supernatant of ascites-derived TILs were increased by As2O3, whereas IL-10 and TGF-β levels were significantly reduced (P<0.05). As2O3 may induce selective depletion and inhibit immunosuppressive function of Tregs, and may enhance the cytotoxic activity of ascites-derived TILs.

Collaboration


Dive into the Xiaohui Du's collaboration.

Top Co-Authors

Avatar

Yingxin Xu

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Rong Li

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Wentao Liang

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Huiwei Sun

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Li Li

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Ning Ning

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Kai Liang

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Weidong Han

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Xin Wu

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Yunshan Zhao

Chinese PLA General Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge