Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan B. Johnston is active.

Publication


Featured researches published by Jonathan B. Johnston.


Nature | 2017

Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin

Adam G. Larson; Daniel Elnatan; Madeline M. Keenen; Michael J. Trnka; Jonathan B. Johnston; Alma L. Burlingame; David A. Agard; Sy Redding; Geeta J. Narlikar

Gene silencing by heterochromatin is proposed to occur in part as a result of the ability of heterochromatin protein 1 (HP1) proteins to spread across large regions of the genome, compact the underlying chromatin and recruit diverse ligands. Here we identify a new property of the human HP1α protein: the ability to form phase-separated droplets. While unmodified HP1α is soluble, either phosphorylation of its N-terminal extension or DNA binding promotes the formation of phase-separated droplets. Phosphorylation-driven phase separation can be promoted or reversed by specific HP1α ligands. Known components of heterochromatin such as nucleosomes and DNA preferentially partition into the HP1α droplets, but molecules such as the transcription factor TFIIB show no preference. Using a single-molecule DNA curtain assay, we find that both unmodified and phosphorylated HP1α induce rapid compaction of DNA strands into puncta, although with different characteristics. We show by direct protein delivery into mammalian cells that an HP1α mutant incapable of phase separation in vitro forms smaller and fewer nuclear puncta than phosphorylated HP1α. These findings suggest that heterochromatin-mediated gene silencing may occur in part through sequestration of compacted chromatin in phase-separated HP1 droplets, which are dissolved or formed by specific ligands on the basis of nuclear context.


Trends in Microbiology | 2011

Cholesterol catabolism as a therapeutic target in Mycobacterium tuberculosis

Hugues Ouellet; Jonathan B. Johnston; Paul R. Ortiz de Montellano

Mycobacterium tuberculosis (Mtb) is an intracellular pathogen that infects 10 million people worldwide and kills 2 million people every year. The uptake and utilization of nutrients by Mtb within the host cell is still poorly understood, although lipids play an important role in Mtb persistence. The recent identification of a large regulon of cholesterol catabolic genes suggests that Mtb can use host sterol for infection and persistence. In this review, we report on recent progress in elucidation of the Mtb cholesterol catabolic reactions and their potential utility as targets for tuberculosis therapeutic agents.


Molecular Microbiology | 2010

Mycobacterium tuberculosis CYP125A1, a steroid C27 monooxygenase that detoxifies intracellularly generated cholest-4-en-3-one

Hugues Ouellet; Shenheng Guan; Jonathan B. Johnston; Eric D. Chow; P.M. Kells; Alma L. Burlingame; Jeffery S. Cox; Larissa M. Podust; Paul R. Ortiz de Montellano

The infectivity and persistence of Mycobacterium tuberculosis requires the utilization of host cell cholesterol. We have examined the specific role of cytochrome P450 CYP125A1 in the cholesterol degradation pathway using genetic, biochemical and high‐resolution mass spectrometric approaches. The analysis of lipid profiles from cells grown on cholesterol revealed that CYP125A1 is required to incorporate the cholesterol side‐chain carbon atoms into cellular lipids, as evidenced by an increase in the mass of the methyl‐branched phthiocerol dimycocerosates. We observed that cholesterol‐exposed cells lacking CYP125A1 accumulate cholest‐4‐en‐3‐one, suggesting that this is a physiological substrate for this enzyme. Reconstitution of enzymatic activity with spinach ferredoxin and ferredoxin reductase revealed that recombinant CYP125A1 indeed binds both cholest‐4‐en‐3‐one and cholesterol, efficiently hydroxylates both of them at C‐27, and then further oxidizes 27‐hydroxycholest‐4‐en‐3‐one to cholest‐4‐en‐3‐one‐27‐oic acid. We determined the X‐ray structure of cholest‐4‐en‐3‐one‐bound CYP125A1 at a resolution of 1.58 Å. CYP125A1 is essential for growth of CDC1551 in media containing cholesterol or cholest‐4‐en‐3‐one. In its absence, the latter compound is toxic for both CDC1551 and H37Rv when added with glycerol as a second carbon source. CYP125A1 is a key enzyme in cholesterol metabolism and plays a crucial role in circumventing the deleterious effect of cholest‐4‐en‐3‐one.


Journal of Biological Chemistry | 2010

Functional Redundancy of Steroid C26-monooxygenase Activity in Mycobacterium tuberculosis Revealed by Biochemical and Genetic Analyses

Jonathan B. Johnston; Hugues Ouellet; Paul R. Ortiz de Montellano

One challenge to the development of new antitubercular drugs is the existence of multiple virulent strains that differ genetically. We and others have recently demonstrated that CYP125A1 is a steroid C26-monooxygenase that plays a key role in cholesterol catabolism in Mycobacterium tuberculosis CDC1551 but, unexpectedly, not in the M. tuberculosis H37Rv strain. This discrepancy suggests that the H37Rv strain possesses compensatory activities. Here, we examined the roles in cholesterol metabolism of two other cytochrome P450 enzymes, CYP124A1 and CYP142A1. In vitro analysis, including comparisons of the binding affinities and catalytic efficiencies, demonstrated that CYP142A1, but not CYP124A1, can support the growth of H37Rv cells on cholesterol in the absence of cyp125A1. All three enzymes can oxidize the sterol side chain to the carboxylic acid state by sequential oxidation to the alcohol, aldehyde, and acid. Interestingly, CYP125A1 generates oxidized sterols of the (25S)-26-hydroxy configuration, whereas the opposite 25R stereochemistry is obtained with CYP124A1 and CYP142A1. Western blot analysis indicated that CYP124A1 was not detectably expressed in either the H37Rv or CDC1551 strains, whereas CYP142A1 was found in H37Rv but not CDC1551. Genetic complementation of CDC1551 Δcyp125A1 cells with the cyp124A1 or cyp142A1 genes revealed that the latter can fully rescue the growth defect on cholesterol, whereas cells overexpressing CYP124A1 grow poorly and accumulate cholest-4-en-3-one. Our data clearly establish a functional redundancy in the essential C26-monooxygenase activity of M. tuberculosis and validate CYP125A1 and CYP142A1 as possible drug targets.


Archives of Biochemistry and Biophysics | 2010

The Mycobacterium tuberculosis cytochrome P450 system

Hugues Ouellet; Jonathan B. Johnston; Paul R. Ortiz de Montellano

Tuberculosis remains a leading cause of human mortality. The emergence of strains of Mycobacterium tuberculosis, the causative agent, that are resistant to the major frontline antitubercular drugs increases the urgency for the development of new therapeutic agents. Sequencing of the M. tuberculosis genome revealed the existence of 20 cytochrome P450 enzymes, some of which are potential candidates for drug targeting. The recent burst of studies reporting microarray-based gene essentiality and transcriptome analyses under in vitro, ex vivo and in vivo conditions highlight the importance of selected P450 isoforms for M. tuberculosis viability and pathogenicity. Current knowledge of the structural and biochemical properties of the M. tuberculosis P450 enzymes and their putative redox partners is reviewed, with an emphasis on findings related to their physiological function(s) as well as their potential as drug targets.


Antimicrobial Agents and Chemotherapy | 2010

A Nonazole CYP51 Inhibitor Cures Chagas’ Disease in a Mouse Model of Acute Infection

Patricia S. Doyle; Chiung-Kuang Chen; Jonathan B. Johnston; Stephanie D. Hopkins; Siegfried S. F. Leung; Matthew P. Jacobson; Juan C. Engel; James H. McKerrow; Larissa M. Podust

ABSTRACT Chagas’ disease, the leading cause of heart failure in Latin America, is caused by the kinetoplastid protozoan Trypanosoma cruzi. The sterols of T. cruzi resemble those of fungi, both in composition and in biosynthesis. Azole inhibitors of sterol 14α-demethylase (CYP51) successfully treat fungal infections in humans, and efforts to adapt the success of antifungal azoles posaconazole and ravuconazole as second-use agents for Chagas’ disease are under way. However, to address concerns about the use of azoles for Chagas’ disease, including drug resistance and cost, the rational design of nonazole CYP51 inhibitors can provide promising alternative drug chemotypes. We report the curative effect of the nonazole CYP51 inhibitor LP10 in an acute mouse model of T. cruzi infection. Mice treated with an oral dose of 40 mg LP10/kg of body weight twice a day (BID) for 30 days, initiated 24 h postinfection, showed no signs of acute disease and had histologically normal tissues after 6 months. A very stringent test of cure showed that 4/5 mice had negative PCR results for T. cruzi, and parasites were amplified by hemoculture in only two treated mice. These results compare favorably with those reported for posaconazole. Electron microscopy and gas chromatography-mass spectrometry (GC-MS) analysis of sterol composition confirmed that treatment with LP10 blocked the 14α-demethylation step and induced breakdown of parasite cell membranes, culminating in severe ultrastructural and morphological alterations and death of the clinically relevant amastigote stage of the parasite.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Biochemical and structural characterization of CYP124: A methyl-branched lipid ω-hydroxylase from Mycobacterium tuberculosis

Jonathan B. Johnston; P.M. Kells; Larissa M. Podust; Paul R. Ortiz de Montellano

Mycobacterium tuberculosis (Mtb) produces a variety of methyl-branched lipids that serve important functions, including modulating the immune response during pathogenesis and contributing to a robust cell wall that is impermeable to many chemical agents. Here, we report characterization of Mtb CYP124 (Rv2266) that includes demonstration of preferential oxidation of methyl-branched lipids. Spectrophotometric titrations and analysis of reaction products indicate that CYP124 tightly binds and hydroxylates these substrates at the chemically disfavored ω-position. We also report X-ray crystal structures of the ligand-free and phytanic acid-bound protein at a resolution of 1.5 Å and 2.1 Å, respectively, which provide structural insights into a cytochrome P450 with predominant ω-hydroxylase activity. The structures of ligand-free and substrate-bound CYP124 reveal several differences induced by substrate binding, including reorganization of the I helix and closure of the active site by elements of the F, G, and D helices that bind the substrate and exclude solvent from the hydrophobic active site cavity. The observed regiospecific catalytic activity suggests roles of CYP124 in the physiological oxidation of relevant Mtb methyl-branched lipids. The enzymatic specificity and structures reported here provide a scaffold for the design and testing of specific inhibitors of CYP124.


PLOS Neglected Tropical Diseases | 2012

Diverse inhibitor chemotypes targeting Trypanosoma cruzi CYP51

Shamila S. Gunatilleke; Claudia M. Calvet; Jonathan B. Johnston; Chiung-Kuang Chen; Grigori Erenburg; Jiri Gut; Juan C. Engel; Kenny K. H. Ang; Joseph Mulvaney; Steven Chen; Michelle R. Arkin; James H. McKerrow; Larissa M. Podust

Background Chagas Disease, a WHO- and NIH-designated neglected tropical disease, is endemic in Latin America and an emerging infection in North America and Europe as a result of population moves. Although a major cause of morbidity and mortality due to heart failure, as well as inflicting a heavy economic burden in affected regions, Chagas Disease elicits scant notice from the pharmaceutical industry because of adverse economic incentives. The discovery and development of new routes to chemotherapy for Chagas Disease is a clear priority. Methodology/Principal Findings The similarity between the membrane sterol requirements of pathogenic fungi and those of the parasitic protozoon Trypanosoma cruzi, the causative agent of Chagas human cardiopathy, has led to repurposing anti-fungal azole inhibitors of sterol 14α-demethylase (CYP51) for the treatment of Chagas Disease. To diversify the therapeutic pipeline of anti-Chagasic drug candidates we exploited an approach that included directly probing the T. cruzi CYP51 active site with a library of synthetic small molecules. Target-based high-throughput screening reduced the library of ∼104,000 small molecules to 185 hits with estimated nanomolar KD values, while cross-validation against T. cruzi-infected skeletal myoblast cells yielded 57 active hits with EC50 <10 µM. Two pools of hits partially overlapped. The top hit inhibited T. cruzi with EC50 of 17 nM and was trypanocidal at 40 nM. Conclusions/Significance The hits are structurally diverse, demonstrating that CYP51 is a rather permissive enzyme target for small molecules. Cheminformatic analysis of the hits suggests that CYP51 pharmacology is similar to that of other cytochromes P450 therapeutic targets, including thromboxane synthase (CYP5), fatty acid ω-hydroxylases (CYP4), 17α-hydroxylase/17,20-lyase (CYP17) and aromatase (CYP19). Surprisingly, strong similarity is suggested to glutaminyl-peptide cyclotransferase, which is unrelated to CYP51 by sequence or structure. Lead compounds developed by pharmaceutical companies against these targets could also be explored for efficacy against T. cruzi.


Archives of Biochemistry and Biophysics | 2011

Structural control of cytochrome P450-catalyzed ω-hydroxylation.

Jonathan B. Johnston; Hugues Ouellet; Larissa M. Podust; Paul R. Ortiz de Montellano

The regiospecific or preferential ω-hydroxylation of hydrocarbon chains is thermodynamically disfavored because the ease of C-H bond hydroxylation depends on the bond strength, and the primary C-H bond of a terminal methyl group is stronger than the secondary or tertiary C-H bond adjacent to it. The hydroxylation reaction will therefore occur primarily at the adjacent secondary or tertiary C-H bond unless the protein structure specifically enforces primary C-H bond oxidation. Here we review the classes of enzymes that catalyze ω-hydroxylation and our current understanding of the structural features that promote the ω-hydroxylation of unbranched and methyl-branched hydrocarbon chains. The evidence indicates that steric constraints are used to favor reaction at the ω-site rather than at the more reactive (ω-1)-site.


Archives of Biochemistry and Biophysics | 2011

Heterologous expression and characterization of the sterol 14α-demethylase CYP51F1 from Candida albicans

Hyoung-Goo Park; Im-Soon Lee; Young-Jin Chun; Chul-Ho Yun; Jonathan B. Johnston; Paul R. Ortiz de Montellano; Donghak Kim

Lanosterol 14α-demethylase (CYP51F1) from Candida albicans is known to be an essential enzyme in fungal sterol biosynthesis. Wild-type CYP51F1 and several of its mutants were heterologously expressed in Escherichia coli, purified, and characterized. It exhibited a typical reduced CO-difference spectrum with a maximum at 446 nm. Reconstitution of CYP51F1 with NADPH-P450 reductase gave a system that successfully converted lanosterol to its demethylated product. Titration of the purified enzyme with lanosterol produced a typical type I spectral change with K(d)=6.7 μM. The azole antifungal agents econazole, fluconazole, ketoconazole, and itraconazole bound tightly to CYP51F1 with K(d) values between 0.06 and 0.42 μM. The CYP51F1 mutations F105L, D116E, Y132H, and R467K frequently identified in clinical isolates were examined to determine their effect on azole drug binding affinity. The azole K(d) values of the purified F105L, D116E, and R467K mutants were little altered. A homology model of C. albicans CYP51F1 suggested that Tyr132 in the BC loop is located close to the heme in the active site, providing a rationale for the modified heme environment caused by the Y132H substitution. Taken together, functional expression and characterization of CYP51F1 provide a starting basis for the design of agents effective against C. albicans infections.

Collaboration


Dive into the Jonathan B. Johnston's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hugues Ouellet

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P.M. Kells

University of California

View shared research outputs
Top Co-Authors

Avatar

Jiri Gut

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge