Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan Binkley is active.

Publication


Featured researches published by Jonathan Binkley.


Molecular Microbiology | 1992

Translation initiation in Escherichia coli: sequences within the ribosome-binding site

Steven Ringquist; Sidney Shinedling; Doug Barrick; Louis S. Green; Jonathan Binkley; Gary D. Stormo; Larry Gold

The translational roles of the Shine‐Dalgarno sequence, the initiation codon, the space between them, and the second codon have been studied. The Shine Dalgarno sequence UAAGGAGG initiated translation roughly four times more efficiently than did the shorter AAGGA sequence. Each Shine‐Dalgarno sequence required a minimum distance to the initiation codon in order to drive translation; spacing, however, could be rather long. Initiation at AUG was more efficient than at GUG or UUG at each spacing examined; initiation at GUG was only slightly better than UUG. Translation was also affected by residues 3′ to the initiation codon. The second codon can influence the rate of initiation, with the magnitude depending on the initiation codon. The data are consistent with a simple kinetic model in which a variety of rate constants contribute to the process of translation initiation.


Nucleic Acids Research | 2012

The Candida genome database incorporates multiple Candida species: multispecies search and analysis tools with curated gene and protein information for Candida albicans and Candida glabrata

Diane O. Inglis; Martha B. Arnaud; Jonathan Binkley; Prachi Shah; Marek S. Skrzypek; Farrell Wymore; Gail Binkley; Stuart R. Miyasato; Matt Simison; Gavin Sherlock

The Candida Genome Database (CGD, http://www.candidagenome.org/) is an internet-based resource that provides centralized access to genomic sequence data and manually curated functional information about genes and proteins of the fungal pathogen Candida albicans and other Candida species. As the scope of Candida research, and the number of sequenced strains and related species, has grown in recent years, the need for expanded genomic resources has also grown. To answer this need, CGD has expanded beyond storing data solely for C. albicans, now integrating data from multiple species. Herein we describe the incorporation of this multispecies information, which includes curated gene information and the reference sequence for C. glabrata, as well as orthology relationships that interconnect Locus Summary pages, allowing easy navigation between genes of C. albicans and C. glabrata. These orthology relationships are also used to predict GO annotations of their products. We have also added protein information pages that display domains, structural information and physicochemical properties; bibliographic pages highlighting important topic areas in Candida biology; and a laboratory strain lineage page that describes the lineage of commonly used laboratory strains. All of these data are freely available at http://www.candidagenome.org/. We welcome feedback from the research community at [email protected].


Proceedings of the National Academy of Sciences of the United States of America | 2003

The integrity of a cholesterol-binding pocket in Niemann-Pick C2 protein is necessary to control lysosome cholesterol levels

Dennis C. Ko; Jonathan Binkley; Arend Sidow; Matthew P. Scott

The neurodegenerative disease Niemann–Pick Type C2 (NPC2) results from mutations in the NPC2 (HE1) gene that cause abnormally high cholesterol accumulation in cells. We find that purified NPC2, a secreted soluble protein, binds cholesterol specifically with a much higher affinity (Kd = 30–50 nM) than previously reported. Genetic and biochemical studies identified single amino acid changes that prevent both cholesterol binding and the restoration of normal cholesterol levels in mutant cells. The amino acids that affect cholesterol binding surround a hydrophobic pocket in the NPC2 protein structure, identifying a candidate sterol-binding location. On the basis of evolutionary analysis and mutagenesis, three other regions of the NPC2 protein emerged as important, including one required for efficient secretion.


Nucleic Acids Research | 2014

The Aspergillus Genome Database: multispecies curation and incorporation of RNA-Seq data to improve structural gene annotations

Gustavo C. Cerqueira; Martha B. Arnaud; Diane O. Inglis; Marek S. Skrzypek; Gail Binkley; Matt Simison; Stuart R. Miyasato; Jonathan Binkley; Joshua Orvis; Prachi Shah; Farrell Wymore; Gavin Sherlock; Jennifer R. Wortman

The Aspergillus Genome Database (AspGD; http://www.aspgd.org) is a freely available web-based resource that was designed for Aspergillus researchers and is also a valuable source of information for the entire fungal research community. In addition to being a repository and central point of access to genome, transcriptome and polymorphism data, AspGD hosts a comprehensive comparative genomics toolbox that facilitates the exploration of precomputed orthologs among the 20 currently available Aspergillus genomes. AspGD curators perform gene product annotation based on review of the literature for four key Aspergillus species: Aspergillus nidulans, Aspergillus oryzae, Aspergillus fumigatus and Aspergillus niger. We have iteratively improved the structural annotation of Aspergillus genomes through the analysis of publicly available transcription data, mostly expressed sequenced tags, as described in a previous NAR Database article (Arnaud et al. 2012). In this update, we report substantive structural annotation improvements for A. nidulans, A. oryzae and A. fumigatus genomes based on recently available RNA-Seq data. Over 26 000 loci were updated across these species; although those primarily comprise the addition and extension of untranslated regions (UTRs), the new analysis also enabled over 1000 modifications affecting the coding sequence of genes in each target genome.


BMC Microbiology | 2013

Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae

Diane O. Inglis; Jonathan Binkley; Marek S. Skrzypek; Martha B. Arnaud; Gustavo C. Cerqueira; Prachi Shah; Farrell Wymore; Jennifer R. Wortman; Gavin Sherlock

BackgroundSecondary metabolite production, a hallmark of filamentous fungi, is an expanding area of research for the Aspergilli. These compounds are potent chemicals, ranging from deadly toxins to therapeutic antibiotics to potential anti-cancer drugs. The genome sequences for multiple Aspergilli have been determined, and provide a wealth of predictive information about secondary metabolite production. Sequence analysis and gene overexpression strategies have enabled the discovery of novel secondary metabolites and the genes involved in their biosynthesis. The Aspergillus Genome Database (AspGD) provides a central repository for gene annotation and protein information for Aspergillus species. These annotations include Gene Ontology (GO) terms, phenotype data, gene names and descriptions and they are crucial for interpreting both small- and large-scale data and for aiding in the design of new experiments that further Aspergillus research.ResultsWe have manually curated Biological Process GO annotations for all genes in AspGD with recorded functions in secondary metabolite production, adding new GO terms that specifically describe each secondary metabolite. We then leveraged these new annotations to predict roles in secondary metabolism for genes lacking experimental characterization. As a starting point for manually annotating Aspergillus secondary metabolite gene clusters, we used antiSMASH (antibiotics and Secondary Metabolite Analysis SHell) and SMURF (Secondary Metabolite Unknown Regions Finder) algorithms to identify potential clusters in A. nidulans, A. fumigatus, A. niger and A. oryzae, which we subsequently refined through manual curation.ConclusionsThis set of 266 manually curated secondary metabolite gene clusters will facilitate the investigation of novel Aspergillus secondary metabolites.


Nucleic Acids Research | 2012

The Aspergillus Genome Database (AspGD): recent developments in comprehensive multispecies curation, comparative genomics and community resources

Martha B. Arnaud; Gustavo C. Cerqueira; Diane O. Inglis; Marek S. Skrzypek; Jonathan Binkley; Marcus C. Chibucos; Jonathan Crabtree; Clinton Howarth; Joshua Orvis; Prachi Shah; Farrell Wymore; Gail Binkley; Stuart R. Miyasato; Matt Simison; Gavin Sherlock; Jennifer R. Wortman

The Aspergillus Genome Database (AspGD; http://www.aspgd.org) is a freely available, web-based resource for researchers studying fungi of the genus Aspergillus, which includes organisms of clinical, agricultural and industrial importance. AspGD curators have now completed comprehensive review of the entire published literature about Aspergillus nidulans and Aspergillus fumigatus, and this annotation is provided with streamlined, ortholog-based navigation of the multispecies information. AspGD facilitates comparative genomics by providing a full-featured genomics viewer, as well as matched and standardized sets of genomic information for the sequenced aspergilli. AspGD also provides resources to foster interaction and dissemination of community information and resources. We welcome and encourage feedback at [email protected].


Proceedings of the National Academy of Sciences of the United States of America | 2010

Functional analyses of variants reveal a significant role for dominant negative and common alleles in oligogenic Bardet–Biedl syndrome

Norann A. Zaghloul; Yangjian Liu; Jantje M. Gerdes; Cecilia Gascue; Edwin C. Oh; Carmen C. Leitch; Yana Bromberg; Jonathan Binkley; Rudolph L. Leibel; Arend Sidow; Jose L. Badano; Nicholas Katsanis

Technological advances hold the promise of rapidly catalyzing the discovery of pathogenic variants for genetic disease. However, this possibility is tempered by limitations in interpreting the functional consequences of genetic variation at candidate loci. Here, we present a systematic approach, grounded on physiologically relevant assays, to evaluate the mutational content (125 alleles) of the 14 genes associated with Bardet–Biedl syndrome (BBS). A combination of in vivo assays with subsequent in vitro validation suggests that a significant fraction of BBS-associated mutations have a dominant-negative mode of action. Moreover, we find that a subset of common alleles, previously considered to be benign, are, in fact, detrimental to protein function and can interact with strong rare alleles to modulate disease presentation. These data represent a comprehensive evaluation of genetic load in a multilocus disease. Importantly, superimposition of these results to human genetics data suggests a previously underappreciated complexity in disease architecture that might be shared among diverse clinical phenotypes.


Science | 2011

A Cell Cycle Phosphoproteome of the Yeast Centrosome

Jamie M. Keck; Michele H. Jones; Catherine C. L. Wong; Jonathan Binkley; Daici Chen; Sue L. Jaspersen; Eric P. Holinger; Tao Xu; Mario Niepel; Michael P. Rout; Jackie Vogel; Arend Sidow; John R. Yates; Mark Winey

Phosphorylation of the yeast centrosome reveals sites of regulation and predicts complex regulation of mammalian centrosomes. Centrosomes organize the bipolar mitotic spindle, and centrosomal defects cause chromosome instability. Protein phosphorylation modulates centrosome function, and we provide a comprehensive map of phosphorylation on intact yeast centrosomes (18 proteins). Mass spectrometry was used to identify 297 phosphorylation sites on centrosomes from different cell cycle stages. We observed different modes of phosphoregulation via specific protein kinases, phosphorylation site clustering, and conserved phosphorylated residues. Mutating all eight cyclin-dependent kinase (Cdk)–directed sites within the core component, Spc42, resulted in lethality and reduced centrosomal assembly. Alternatively, mutation of one conserved Cdk site within γ-tubulin (Tub4-S360D) caused mitotic delay and aberrant anaphase spindle elongation. Our work establishes the extent and complexity of this prominent posttranslational modification in centrosome biology and provides specific examples of phosphorylation control in centrosome function.


Nucleic Acids Research | 2017

The Candida Genome Database (CGD): incorporation of Assembly 22, systematic identifiers and visualization of high throughput sequencing data

Marek S. Skrzypek; Jonathan Binkley; Gail Binkley; Stuart R. Miyasato; Matt Simison; Gavin Sherlock

The Candida Genome Database (CGD, http://www.candidagenome.org/) is a freely available online resource that provides gene, protein and sequence information for multiple Candida species, along with web-based tools for accessing, analyzing and exploring these data. The mission of CGD is to facilitate and accelerate research into Candida pathogenesis and biology, by curating the scientific literature in real time, and connecting literature-derived annotations to the latest version of the genomic sequence and its annotations. Here, we report the incorporation into CGD of Assembly 22, the first chromosome-level, phased diploid assembly of the C. albicans genome, coupled with improvements that we have made to the assembly using additional available sequence data. We also report the creation of systematic identifiers for C. albicans genes and sequence features using a system similar to that adopted by the yeast community over two decades ago. Finally, we describe the incorporation of JBrowse into CGD, which allows online browsing of mapped high throughput sequencing data, and its implementation for several RNA-Seq data sets, as well as the whole genome sequencing data that was used in the construction of Assembly 22.


Nucleic Acids Research | 2014

The Candida Genome Database: The new homology information page highlights protein similarity and phylogeny

Jonathan Binkley; Martha B. Arnaud; Diane O. Inglis; Marek S. Skrzypek; Prachi Shah; Farrell Wymore; Gail Binkley; Stuart R. Miyasato; Matt Simison; Gavin Sherlock

The Candida Genome Database (CGD, http://www.candidagenome.org/) is a freely available online resource that provides gene, protein and sequence information for multiple Candida species, along with web-based tools for accessing, analyzing and exploring these data. The goal of CGD is to facilitate and accelerate research into Candida pathogenesis and biology. The CGD Web site is organized around Locus pages, which display information collected about individual genes. Locus pages have multiple tabs for accessing different types of information; the default Summary tab provides an overview of the gene name, aliases, phenotype and Gene Ontology curation, whereas other tabs display more in-depth information, including protein product details for coding genes, notes on changes to the sequence or structure of the gene and a comprehensive reference list. Here, in this update to previous NAR Database articles featuring CGD, we describe a new tab that we have added to the Locus page, entitled the Homology Information tab, which displays phylogeny and gene similarity information for each locus.

Collaboration


Dive into the Jonathan Binkley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge