Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martha B. Arnaud is active.

Publication


Featured researches published by Martha B. Arnaud.


Nature | 2009

Evolution of pathogenicity and sexual reproduction in eight Candida genomes.

Geraldine Butler; Matthew D. Rasmussen; Michael F. Lin; Manuel A. S. Santos; Sharadha Sakthikumar; Carol A. Munro; Esther Rheinbay; Manfred Grabherr; Anja Forche; Jennifer L. Reedy; Ino Agrafioti; Martha B. Arnaud; Steven Bates; Alistair J. P. Brown; Sascha Brunke; Maria C. Costanzo; David A. Fitzpatrick; Piet W. J. de Groot; David Harris; Lois L. Hoyer; Bernhard Hube; Frans M. Klis; Chinnappa D. Kodira; Nicola Lennard; Mary E. Logue; Ronny Martin; Aaron M. Neiman; Elissavet Nikolaou; Michael A. Quail; Janet Quinn

Candida species are the most common cause of opportunistic fungal infection worldwide. Here we report the genome sequences of six Candida species and compare these and related pathogens and non-pathogens. There are significant expansions of cell wall, secreted and transporter gene families in pathogenic species, suggesting adaptations associated with virulence. Large genomic tracts are homozygous in three diploid species, possibly resulting from recent recombination events. Surprisingly, key components of the mating and meiosis pathways are missing from several species. These include major differences at the mating-type loci (MTL); Lodderomyces elongisporus lacks MTL, and components of the a1/α2 cell identity determinant were lost in other species, raising questions about how mating and cell types are controlled. Analysis of the CUG leucine-to-serine genetic-code change reveals that 99% of ancestral CUG codons were erased and new ones arose elsewhere. Lastly, we revise the Candida albicans gene catalogue, identifying many new genes.


Nucleic Acids Research | 2006

Escherichia coli K-12: a cooperatively developed annotation snapshot—2005

Monica Riley; Takashi Abe; Martha B. Arnaud; Mary K.B. Berlyn; Frederick R. Blattner; Roy R. Chaudhuri; Jeremy D. Glasner; Takashi Horiuchi; Ingrid M. Keseler; Takehide Kosuge; Hirotada Mori; Nicole T. Perna; Guy Plunkett; Kenneth E. Rudd; Margrethe H. Serres; Gavin H. Thomas; Nicholas R. Thomson; David S. Wishart; Barry L. Wanner

The goal of this group project has been to coordinate and bring up-to-date information on all genes of Escherichia coli K-12. Annotation of the genome of an organism entails identification of genes, the boundaries of genes in terms of precise start and end sites, and description of the gene products. Known and predicted functions were assigned to each gene product on the basis of experimental evidence or sequence analysis. Since both kinds of evidence are constantly expanding, no annotation is complete at any moment in time. This is a snapshot analysis based on the most recent genome sequences of two E.coli K-12 bacteria. An accurate and up-to-date description of E.coli K-12 genes is of particular importance to the scientific community because experimentally determined properties of its gene products provide fundamental information for annotation of innumerable genes of other organisms. Availability of the complete genome sequence of two K-12 strains allows comparison of their genotypes and mutant status of alleles.


Nucleic Acids Research | 2012

The Candida genome database incorporates multiple Candida species: multispecies search and analysis tools with curated gene and protein information for Candida albicans and Candida glabrata

Diane O. Inglis; Martha B. Arnaud; Jonathan Binkley; Prachi Shah; Marek S. Skrzypek; Farrell Wymore; Gail Binkley; Stuart R. Miyasato; Matt Simison; Gavin Sherlock

The Candida Genome Database (CGD, http://www.candidagenome.org/) is an internet-based resource that provides centralized access to genomic sequence data and manually curated functional information about genes and proteins of the fungal pathogen Candida albicans and other Candida species. As the scope of Candida research, and the number of sequenced strains and related species, has grown in recent years, the need for expanded genomic resources has also grown. To answer this need, CGD has expanded beyond storing data solely for C. albicans, now integrating data from multiple species. Herein we describe the incorporation of this multispecies information, which includes curated gene information and the reference sequence for C. glabrata, as well as orthology relationships that interconnect Locus Summary pages, allowing easy navigation between genes of C. albicans and C. glabrata. These orthology relationships are also used to predict GO annotations of their products. We have also added protein information pages that display domains, structural information and physicochemical properties; bibliographic pages highlighting important topic areas in Candida biology; and a laboratory strain lineage page that describes the lineage of commonly used laboratory strains. All of these data are freely available at http://www.candidagenome.org/. We welcome feedback from the research community at [email protected].


Nucleic Acids Research | 2014

The Aspergillus Genome Database: multispecies curation and incorporation of RNA-Seq data to improve structural gene annotations

Gustavo C. Cerqueira; Martha B. Arnaud; Diane O. Inglis; Marek S. Skrzypek; Gail Binkley; Matt Simison; Stuart R. Miyasato; Jonathan Binkley; Joshua Orvis; Prachi Shah; Farrell Wymore; Gavin Sherlock; Jennifer R. Wortman

The Aspergillus Genome Database (AspGD; http://www.aspgd.org) is a freely available web-based resource that was designed for Aspergillus researchers and is also a valuable source of information for the entire fungal research community. In addition to being a repository and central point of access to genome, transcriptome and polymorphism data, AspGD hosts a comprehensive comparative genomics toolbox that facilitates the exploration of precomputed orthologs among the 20 currently available Aspergillus genomes. AspGD curators perform gene product annotation based on review of the literature for four key Aspergillus species: Aspergillus nidulans, Aspergillus oryzae, Aspergillus fumigatus and Aspergillus niger. We have iteratively improved the structural annotation of Aspergillus genomes through the analysis of publicly available transcription data, mostly expressed sequenced tags, as described in a previous NAR Database article (Arnaud et al. 2012). In this update, we report substantive structural annotation improvements for A. nidulans, A. oryzae and A. fumigatus genomes based on recently available RNA-Seq data. Over 26 000 loci were updated across these species; although those primarily comprise the addition and extension of untranslated regions (UTRs), the new analysis also enabled over 1000 modifications affecting the coding sequence of genes in each target genome.


BMC Microbiology | 2013

Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae

Diane O. Inglis; Jonathan Binkley; Marek S. Skrzypek; Martha B. Arnaud; Gustavo C. Cerqueira; Prachi Shah; Farrell Wymore; Jennifer R. Wortman; Gavin Sherlock

BackgroundSecondary metabolite production, a hallmark of filamentous fungi, is an expanding area of research for the Aspergilli. These compounds are potent chemicals, ranging from deadly toxins to therapeutic antibiotics to potential anti-cancer drugs. The genome sequences for multiple Aspergilli have been determined, and provide a wealth of predictive information about secondary metabolite production. Sequence analysis and gene overexpression strategies have enabled the discovery of novel secondary metabolites and the genes involved in their biosynthesis. The Aspergillus Genome Database (AspGD) provides a central repository for gene annotation and protein information for Aspergillus species. These annotations include Gene Ontology (GO) terms, phenotype data, gene names and descriptions and they are crucial for interpreting both small- and large-scale data and for aiding in the design of new experiments that further Aspergillus research.ResultsWe have manually curated Biological Process GO annotations for all genes in AspGD with recorded functions in secondary metabolite production, adding new GO terms that specifically describe each secondary metabolite. We then leveraged these new annotations to predict roles in secondary metabolism for genes lacking experimental characterization. As a starting point for manually annotating Aspergillus secondary metabolite gene clusters, we used antiSMASH (antibiotics and Secondary Metabolite Analysis SHell) and SMURF (Secondary Metabolite Unknown Regions Finder) algorithms to identify potential clusters in A. nidulans, A. fumigatus, A. niger and A. oryzae, which we subsequently refined through manual curation.ConclusionsThis set of 266 manually curated secondary metabolite gene clusters will facilitate the investigation of novel Aspergillus secondary metabolites.


Nucleic Acids Research | 2012

The Aspergillus Genome Database (AspGD): recent developments in comprehensive multispecies curation, comparative genomics and community resources

Martha B. Arnaud; Gustavo C. Cerqueira; Diane O. Inglis; Marek S. Skrzypek; Jonathan Binkley; Marcus C. Chibucos; Jonathan Crabtree; Clinton Howarth; Joshua Orvis; Prachi Shah; Farrell Wymore; Gail Binkley; Stuart R. Miyasato; Matt Simison; Gavin Sherlock; Jennifer R. Wortman

The Aspergillus Genome Database (AspGD; http://www.aspgd.org) is a freely available, web-based resource for researchers studying fungi of the genus Aspergillus, which includes organisms of clinical, agricultural and industrial importance. AspGD curators have now completed comprehensive review of the entire published literature about Aspergillus nidulans and Aspergillus fumigatus, and this annotation is provided with streamlined, ortholog-based navigation of the multispecies information. AspGD facilitates comparative genomics by providing a full-featured genomics viewer, as well as matched and standardized sets of genomic information for the sequenced aspergilli. AspGD also provides resources to foster interaction and dissemination of community information and resources. We welcome and encourage feedback at [email protected].


Nucleic Acids Research | 2004

The Candida Genome Database (CGD), a community resource for Candida albicans gene and protein information

Martha B. Arnaud; Maria C. Costanzo; Marek S. Skrzypek; Gail Binkley; Christopher Lane; Stuart R. Miyasato; Gavin Sherlock

The Candida Genome Database (CGD) is a new database that contains genomic information about the opportunistic fungal pathogen Candida albicans. CGD is a public resource for the research community that is interested in the molecular biology of this fungus. CGD curators are in the process of combing the scientific literature to collect all C.albicans gene names and aliases; to assign gene ontology terms that describe the molecular function, biological process, and subcellular localization of each gene product; to annotate mutant phenotypes; and to summarize the function and biological context of each gene product in free-text description lines. CGD also provides community resources, including a reservation system for gene names and a colleague registry through which Candida researchers can share contact information and research interests. CGD is publicly funded (by NIH grant R01 DE15873-01 from the NIDCR) and is freely available at http://www.candidagenome.org/.


Nucleic Acids Research | 2010

The Aspergillus Genome Database, a curated comparative genomics resource for gene, protein and sequence information for the Aspergillus research community

Martha B. Arnaud; Marcus C. Chibucos; Maria C. Costanzo; Jonathan Crabtree; Diane O. Inglis; Adil Lotia; Joshua Orvis; Prachi Shah; Marek S. Skrzypek; Gail Binkley; Stuart R. Miyasato; Jennifer R. Wortman; Gavin Sherlock

The Aspergillus Genome Database (AspGD) is an online genomics resource for researchers studying the genetics and molecular biology of the Aspergilli. AspGD combines high-quality manual curation of the experimental scientific literature examining the genetics and molecular biology of Aspergilli, cutting-edge comparative genomics approaches to iteratively refine and improve structural gene annotations across multiple Aspergillus species, and web-based research tools for accessing and exploring the data. All of these data are freely available at http://www.aspgd.org. We welcome feedback from users and the research community at [email protected].


Nucleic Acids Research | 2007

Sequence resources at the Candida Genome Database

Martha B. Arnaud; Maria C. Costanzo; Marek S. Skrzypek; Prachi Shah; Gail Binkley; Christopher Lane; Stuart R. Miyasato; Gavin Sherlock

The Candida Genome Database (CGD, ) contains a curated collection of genomic information and community resources for researchers who are interested in the molecular biology of the opportunistic pathogen Candida albicans. With the recent release of a new assembly of the C.albicans genome, Assembly 20, C.albicans genomics has entered a new era. Although the C.albicans genome assembly continues to undergo refinement, multiple assemblies and gene nomenclatures will remain in widespread use by the research community. CGD has now taken on the responsibility of maintaining the most up-to-date version of the genome sequence by providing the data from this new assembly alongside the data from the previous assemblies, as well as any future corrections and refinements. In this database update, we describe the sequence information available for C.albicans, the sequence information contained in CGD, and the tools for sequence retrieval, analysis and comparison that CGD provides. CGD is freely accessible at and CGD curators may be contacted by email at [email protected].


Nucleic Acids Research | 2010

New tools at the Candida Genome Database: biochemical pathways and full-text literature search

Marek S. Skrzypek; Martha B. Arnaud; Maria C. Costanzo; Diane O. Inglis; Prachi Shah; Gail Binkley; Stuart R. Miyasato; Gavin Sherlock

The Candida Genome Database (CGD, http://www.candidagenome.org/) provides online access to genomic sequence data and manually curated functional information about genes and proteins of the human pathogen Candida albicans. Herein, we describe two recently added features, Candida Biochemical Pathways and the Textpresso full-text literature search tool. The Biochemical Pathways tool provides visualization of metabolic pathways and analysis tools that facilitate interpretation of experimental data, including results of large-scale experiments, in the context of Candida metabolism. Textpresso for Candida allows searching through the full-text of Candida-specific literature, including clinical and epidemiological studies.

Collaboration


Dive into the Martha B. Arnaud's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge