Jonathan Bradley
Johns Hopkins University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jonathan Bradley.
Neuron | 2005
Johannes Reisert; Jun Lai; King Wai Yau; Jonathan Bradley
In vertebrate olfactory receptor neurons (ORNs), the odorant-triggered receptor current flows through two distinct ion channels on the sensory cilia: Ca2+ influx through a cyclic nucleotide-gated (CNG) channel followed by Cl- efflux through a Ca2+-activated anion channel. The excitatory Cl- current amplifies the small CNG current and crucially depends on a high intracellular Cl- concentration. We show here that a (Na+)-(K+)-(2Cl-) cotransporter, NKCC1, is required for this Cl- current, in that ORNs deficient in Nkcc1 or incubated with an NKCC blocker (bumetanide) lack the Cl- current. Surprisingly, immunocytochemistry indicates that NKCC1 is located on the somata and dendrites of ORNs rather than the cilia, where transduction occurs. This topography is remarkably similar to the situation in secretory epithelial cells, where basolateral Cl- uptake and apical Cl- efflux facilitate transepithelial fluid movement. Thus, a single functional architecture serves two entirely different purposes, probably underscoring the epithelial origin of the ORNs.
Nature Neuroscience | 2004
Jonathan Bradley; Wolfgang Bönigk; King Wai Yau; Stephan Frings
An important mechanism by which vertebrate olfactory sensory neurons rapidly adapt to odorants is feedback modulation of the Ca2+-permeable cyclic nucleotide–gated (CNG) transduction channels. Extensive heterologous studies of homomeric CNGA2 channels have led to a molecular model of channel modulation based on the binding of calcium-calmodulin to a site on the cytoplasmic amino terminus of CNGA2. Native rat olfactory CNG channels, however, are heteromeric complexes of three homologous but distinct subunits. Notably, in heteromeric channels, we found no role for CNGA2 in feedback modulation. Instead, an IQ-type calmodulin-binding site on CNGB1b and a similar but previously unidentified site on CNGA4 are necessary and sufficient. These sites seem to confer binding of Ca2+-free calmodulin (apocalmodulin), which is then poised to trigger inhibition of native channels in the presence of Ca2+.
Current Opinion in Neurobiology | 2005
Jonathan Bradley; Johannes Reisert; Stephan Frings
Cyclic nucleotide-gated (CNG) channels are found in several cell types, and are best studied in photoreceptors and olfactory sensory neurons. There, CNG channels are gated by the second messengers of the visual and olfactory signalling cascades, cGMP and cAMP respectively, and operate as transduction channels generating the stimulus-induced receptor potentials. In visual and olfactory sensory cells CNG channels conduct cationic currents. Calcium can contribute a large fraction of this current, and calcium influx serves a modulatory role in CNG-channel mediated signal transduction. There have been recent developments in our understanding of how the regulation of CNG channels contributes to the physiological properties of photoreceptors and olfactory sensory cells, and in particular on the role of calcium-mediated feedback.
Journal of Biological Chemistry | 2006
Stylianos Michalakis; Johannes Reisert; Heidi Geiger; Christian H. Wetzel; Xiangang Zong; Jonathan Bradley; Marc Spehr; Sabine Hüttl; Andrea Gerstner; Alexander Pfeifer; Hanns Hatt; King Wai Yau; Martin Biel
Olfactory receptor neurons (ORNs) employ a cyclic nucleotide-gated (CNG) channel to generate a receptor current in response to an odorant-induced rise in cAMP. This channel contains three types of subunits, the principal CNGA2 subunit and two modulatory subunits (CNGA4 and CNGB1b). Here, we have analyzed the functional relevance of CNGB1 for olfaction by gene targeting in mice. Electro-olfactogram responses of CNGB1-deficient (CNGB1-/-) mice displayed a reduced maximal amplitude and decelerated onset and recovery kinetics compared with wild-type mice. In a behavioral test, CNGB1-/- mice exhibited a profoundly decreased olfactory performance. Electrophysiological recordings revealed that ORNs of CNGB1-/- mice weakly expressed a CNG current with decreased cAMP sensitivity, very rapid flicker-gating behavior and no fast modulation by Ca2+-calmodulin. Co-immunoprecipitation confirmed the presence of a CNGA2/CNGA4 channel in the olfactory epithelium of CNGB1-/- mice. This CNGA2/CNGA4 channel was targeted to the plasma membrane of olfactory knobs, but failed to be trafficked into olfactory cilia. Interestingly, we observed a similar trafficking defect in mice deficient for the CNGA4 subunit. In conclusion, these results demonstrate that CNGB1 has a dual function in vivo. First, it endows the olfactory CNG channel with a variety of biophysical properties tailored to the specific requirements of olfactory transduction. Second, together with the CNGA4 subunit, CNGB1 is needed for ciliary targeting of the olfactory CNG channel.
The Journal of Neuroscience | 2009
Jonathan Bradley; Ray Luo; Thomas S. Otis; David A. DiGregorio
A major goal in neuroscience is the development of optical reporters of membrane potential that are easy to use, have limited phototoxicity, and achieve the speed and sensitivity necessary for detection of individual action potentials in single neurons. Here we present a novel, two-component optical approach that attains these goals. By combining DiO, a fluorescent neuronal tracer dye, with dipicrylamine (DPA), a molecule whose membrane partitioning is voltage-sensitive, optical signals related to changes in membrane potential based on FRET (Förster resonance energy transfer) are reported. Using DiO/DPA in HEK-293 cells with diffraction-limited laser spot illumination, depolarization-induced fluorescence changes of 56% per 100 mV (τ ∼ 0.1 ms) were obtained, while in neuronal cultures and brain slices, action potentials (APs) generated a ΔF/F per 100 mV of >25%. The high sensitivity provided by DiO/DPA enabled the detection of subthreshold activity and high-frequency APs in single trials from somatic, axonal, or dendritic membrane compartments. Recognizing that DPA can depress excitability, we assayed the amplitude and duration of single APs, burst properties, and spontaneous firing in neurons of primary cultures and brain slices and found that they are undetectably altered by up to 2 μm DPA and only slightly perturbed by 5 μm DPA. These findings substantiate a simple, noninvasive method that relies on a neuronal tracer dye for monitoring electrical signal flow, and offers unique flexibility for the study of signaling within intact neuronal circuits.
bioRxiv | 2018
Mariya Chavarha; Vincent Villette; Ivan K. Dimov; Lagnajeet Pradhan; Stephen Wenceslao Evans; Dongqing Shi; Renzhi Yang; Simon Chamberland; Jonathan Bradley; Benjamin Mathieu; Francois St-Pierre; Mark J. Schnitzer; Guo-Qiang Bi; Katalin Tóth; Jun B. Ding; Stéphane Dieudonné; Michael Z. Lin
Imaging of transmembrane voltage deep in brain tissue with cellular resolution has the potential to reveal information processing by neuronal circuits in living animals with minimal perturbation. Multi-photon voltage imaging in vivo, however, is currently limited by speed and sensitivity of both indicators and imaging methods. Here, we report the engineering of an improved genetically encoded voltage indicator, ASAP3, which exhibits up to 51% fluorescence responses in the physiological voltage range, sub-millisecond activation kinetics, and full responsivity under two-photon illumination. We also introduce an ultrafast local volume excitation (ULOVE) two-photon scanning method to sample ASAP3 signals in awake mice at kilohertz rates with increased stability and sensitivity. ASAP3 and ULOVE allowed continuous single-trial tracking of spikes and subthreshold events for minutes in deep locations, with subcellular resolution, and with repeated sampling over multiple days. By imaging voltage in visual cortex neurons, we found evidence for cell type-dependent subthreshold modulation by locomotion. Thus, ASAP3 and ULOVE enable continuous high-speed high-resolution imaging of electrical activity in deeply located genetically defined neurons during awake behavior.
The Journal of Neuroscience | 1999
Wolfgang Bönigk; Jonathan Bradley; Frank Müller; Federico Sesti; Ingrid Boekhoff; Gabriele V. Ronnett; U. Benjamin Kaupp; Stephan Frings
Science | 1988
Michael G. Murray; Jonathan Bradley; Xiao-Feng Yang; Eckard Wimmer; Eric G. Moss; Vincent R. Racaniello
Science | 2001
Jonathan Bradley; Dirk Reuter; Stephan Frings
Science | 2001
Jonathan Bradley; Stephan Frings; King Wai Yau; Randall R. Reed