Jonathan D. Bohbot
United States Department of Agriculture
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jonathan D. Bohbot.
PLOS ONE | 2010
Jonathan D. Bohbot; Joseph C. Dickens
Background DEET, 2-undecanone (2-U), IR3535 and Picaridin are widely used as insect repellents to prevent interactions between humans and many arthropods including mosquitoes. Their molecular action has only recently been studied, yielding seemingly contradictory theories including odorant-dependent inhibitory and odorant-independent excitatory activities on insect olfactory sensory neurons (OSNs) and odorant receptor proteins (ORs). Methodology/Principal Findings Here we characterize the action of these repellents on two Aedes aegypti ORs, AaOR2 and AaOR8, individually co-expressed with the common co-receptor AaOR7 in Xenopus oocytes; these ORs are respectively activated by the odors indole (AaOR2) and (R)-(−)-1-octen3-ol (AaOR8), odorants used to locate oviposition sites and host animals. In the absence of odorants, DEET activates AaOR2 but not AaOR8, while 2-U activates AaOR8 but not AaOR2; IR3535 and Picaridin do not activate these ORs. In the presence of odors, DEET strongly inhibits AaOR8 but not AaOR2, while 2-U strongly inhibits AaOR2 but not AaOR8; IR3535 and Picaridin strongly inhibit both ORs. Conclusions/Significance These data demonstrate that repellents can act as olfactory agonists or antagonists, thus modulating OR activity, bringing concordance to conflicting models.
PLOS ONE | 2009
Jonathan D. Bohbot; Joseph C. Dickens
Enantiomers differ only in the left or right handedness (chirality) of their orientations and exhibit identical chemical and physical properties. In chemical communication systems, enantiomers can be differentially active at the physiological and behavioral levels. Only recently were enantioselective odorant receptors demonstrated in mammals while their existence in insects has remained hypothetical. Using the two-microelectrode voltage clamp of Xenopus oocytes, we show that the yellow fever mosquito, Aedes aegypti, odorant receptor 8 (AaOR8) acts as a chiral selective receptor for the (R)-(—)-enantiomer of 1-octen-3-ol, which in the presence of other kairomones is an attractant used by blood-sucking insects to locate their hosts. In addition to steric constraints, chain length and degree of unsaturation play important roles in this recognition process. This is the first characterization of an enantioselective odorant receptor in insects and the results demonstrate that an OR alone, without helper proteins, can account for chiral specificity exhibited by olfactory sensory neurons (OSNs).
Medical and Veterinary Entomology | 2011
Jonathan D. Bohbot; L. Fu; T. C. Le; Kamlesh R. Chauhan; C. L. Cantrell; Joseph C. Dickens
Several lines of evidence suggest that insect repellent molecules reduce mosquito–host contacts by interacting with odorants and odorant receptors (ORs), thereby ultimately affecting olfactory‐driven behaviours. We describe the molecular effects of 10 insect repellents and a pyrethroid insecticide with known repellent activity on two highly specific Aedes aegypti (Diptera: Culicidae) ORs, AaOR2 + AaOR7 and AaOR8 + AaOR7, exquisitely sensitive to key mosquito attractants indole and (R)‐(−)‐1‐octen‐3‐ol, expressed in oocytes of Xenopus (Anura: Pipidae). Our study demonstrates that insect repellents can both inhibit odorant‐evoked currents mediated by ORs and independently elicit currents in the absence of odorants. All of the repellents had effects on one or both ORs; most of these compounds were selective inhibitors and showed a high degree of specificity in their capacity to activate the two ORs. These results show that a range of insect repellents belonging to structurally diverse chemical classes modulate the function of mosquito ORs through multiple molecular mechanisms.
Neuropharmacology | 2012
Jonathan D. Bohbot; Joseph C. Dickens
The modulation of insect behavior for the purpose of controlling the spread of infectious diseases has been the task of a few insect repellents for which the mechanistic modes of action on odorant receptors (ORs) are unclear. Here, we study the effects of the repellents DEET and IR3535, and a novel OR co-receptor (Orco) agonist on odorant-evoked currents in Xenopus oocytes expressing two subtypes of Aedes aegypti ORs (AaORs). We show that DEET and IR3535 behave as insurmountable antagonists of ORs, and that modulation of OR activity is not restricted to antagonism and agonism, but also includes synergism. This knowledge of the molecular mechanisms underlying OR blockade, activation and hyperactivation will be fundamental to the development of novel strategies for the control of mosquito behavior.
Insect Biochemistry and Molecular Biology | 2014
Jackson T. Sparks; Jonathan D. Bohbot; Joseph C. Dickens
The yellow-fever mosquito Aedes aegypti is a major vector of human diseases, such as dengue, yellow fever, chikungunya and West Nile viruses. Chemoreceptor organs on the labella and tarsi are involved in human host evaluation and thus serve as potential foci for the disruption of blood feeding behavior. In addition to host detection, these contact chemoreceptors mediate feeding, oviposition and conspecific recognition; however, the molecular landscape of chemoreception in these tissues remains mostly uncharacterized. Here we report the expression profile of all putative chemoreception genes in the labella and tarsi of both sexes of adult Ae. aegypti and discuss their possible roles in the physiology and behavior of this important disease vector.
Insect Biochemistry and Molecular Biology | 2014
Jonathan D. Bohbot; Jackson T. Sparks; Joseph C. Dickens
Female yellow-fever mosquitoes, Aedes aegypti, are obligate blood-feeders and vectors of the pathogens that cause dengue fever, yellow fever and Chikungunya. This feeding behavior concludes a series of multisensory events guiding the mosquito to its host from a distance. The antennae and maxillary palps play a major role in host detection and other sensory-mediated behaviors. Compared to the antennae, the maxillary palps are a relatively simple organ and thus an attractive model for exploration of the neuromolecular networks underlying chemo- and mechanosensation. In this study, we surveyed the expressed genetic components and examined their potential involvement with these sensory modalities. Using Illumina sequencing, we identified the transcriptome of the maxillary palps of physiologically mature female Ae. aegypti. Genes expressed in the maxillary palps included those involved in sensory reception, signal transduction and neuromodulation. In addition to previously reported chemosensory genes, we identified candidate transcripts potentially involved in mechanosensation and thermosensation. This survey lays the groundwork to explore sensory networks in an insect appendage. The identification of genes involved in thermosensation provides prospective molecular targets for the development of chemicals aimed at disrupting the behavior of this medically important insect.
Frontiers in Physiology | 2013
Jonathan D. Bohbot; Nicolas Francois Durand; Bryan T. Vinyard; Joseph C. Dickens
Attraction of female Aedes aegypti mosquitoes to 1-octen-3-ol (octenol), CO2, lactic acid, or ammonia emitted by vertebrate hosts is not only contingent on the presence of odorants in the environment, but is also influenced by the insect’s physiological state. For anautogenous mosquito species, like A. aegypti, newly emerged adult females neither respond to host odors nor engage in blood-feeding; the bases for these behaviors are poorly understood. Here we investigated detection of two components of an attractant blend emitted by vertebrate hosts, octenol, and CO2, by female A. aegypti mosquitoes using electrophysiological, behavioral, and molecular approaches. An increase in sensitivity of octenol olfactory receptor neurons (ORNs) was correlated with an increase in odorant receptor gene (Or) expression and octenol-mediated attractive behavior from day 1 to day 6 post-emergence. While the sensitivity of octenol ORNs was maintained through day 10, behavioral responses to octenol decreased as did the ability of females to discriminate between octenol and octenol + CO2. Our results show differing age-related roles for the peripheral receptors for octenol and higher order neural processing in the behavior of female mosquitoes.
Frontiers in Cellular Neuroscience | 2012
Jonathan D. Bohbot; Joseph C. Dickens
Insect olfactory receptors (ORs) detect chemicals, shape neuronal physiology, and regulate behavior. Although ORs have been categorized as “generalists” and “specialists” based on their ligand spectrum, both electrophysiological studies and recent pharmacological investigations show that ORs specifically recognize non-pheromonal compounds, and that our understanding of odorant-selectivity mirrors our knowledge of insect chemical ecology. As we are progressively becoming aware that ORs are activated through a variety of mechanisms, the molecular basis of odorant-selectivity and the corollary notion of broad-tuning need to be re-examined from a pharmacological and evolutionary perspective.
Progress in Molecular Biology and Translational Science | 2015
Jackson T. Sparks; Jonathan D. Bohbot; Joseph C. Dickens
Chemical repellents are used to decrease contacts between insect disease vectors and their hosts, thus reducing the probability of disease transmission. The molecular mechanisms by which repellents have their effects are poorly understood and remain a controversial topic. Here, we present recent results of studies aimed at a more thorough understanding of the mode of action of repellents and discuss the implications of these findings for future research and development of novel or improved repellents.
Journal of Medical Entomology | 2017
Jackson T. Sparks; Jonathan D. Bohbot; Mihailo S. Ristić; Danijela Mišić; Marijana Skorić; Autar Mattoo; Joseph C. Dickens
Abstract Nepeta essential oil (Neo; catnip) and its major component, nepetalactone, have long been known to repel insects including mosquitoes. However, the neural mechanisms through which these repellents are detected by mosquitoes, including the yellow fever mosquito Aedes aegypti (L.), an important vector of Zika virus, were poorly understood. Here we show that Neo volatiles activate olfactory receptor neurons within the basiconic sensilla on the maxillary palps of female Ae. aegypti. A gustatory receptor neuron sensitive to the feeding deterrent quinine and housed within sensilla on the labella of females was activated by both Neo and nepetalactone. Activity of a second gustatory receptor neuron sensitive to the feeding stimulant sucrose was suppressed by both repellents. Our results provide neural pathways for the reported spatial repellency and feeding deterrence of these repellents. A better understanding of the neural input through which female mosquitoes make decisions to feed will facilitate design of new repellents and management strategies involving their use.