Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan D. Caranto is active.

Publication


Featured researches published by Jonathan D. Caranto.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase

Jonathan D. Caranto; Kyle M. Lancaster

Significance The enzymatic reactions that occur during nitrification are nature’s means to use ammonia as cellular fuel. Complete understanding of nitrification and related processes are vital to sustainable agriculture and renewable energy technologies. The prevailing view of the first phase of nitrification is that ammonia oxidizing bacteria use two enzymes, ammonia monooxygenase and hydroxylamine oxidoreductase, to oxidize ammonia to nitrite via hydroxylamine as an obligate intermediate. Our work reveals nitric oxide as an additional obligate intermediate. The presented findings necessitate revision of a key biogeochemical process, identify a new bioenergetic role for nitric oxide, predict participation of a third enzyme in the biological oxidation of ammonia to nitrite, and will inform models toward sustainable agriculture. Ammonia (NH3)-oxidizing bacteria (AOB) emit substantial amounts of nitric oxide (NO) and nitrous oxide (N2O), both of which contribute to the harmful environmental side effects of large-scale agriculture. The currently accepted model for AOB metabolism involves NH3 oxidation to nitrite (NO2–) via a single obligate intermediate, hydroxylamine (NH2OH). Within this model, the multiheme enzyme hydroxylamine oxidoreductase (HAO) catalyzes the four-electron oxidation of NH2OH to NO2–. We provide evidence that HAO oxidizes NH2OH by only three electrons to NO under both anaerobic and aerobic conditions. NO2– observed in HAO activity assays is a nonenzymatic product resulting from the oxidation of NO by O2 under aerobic conditions. Our present study implies that aerobic NH3 oxidation by AOB occurs via two obligate intermediates, NH2OH and NO, necessitating a mediator of the third enzymatic step.


Langmuir | 2010

Adsorption kinetics of catalase to thin films of carbon nanotubes.

Jessica L. Felhofer; Jonathan D. Caranto; Carlos D. Garcia

The adsorption conditions used to immobilize catalase onto thin films of carbon nanotubes were investigated to elucidate the conditions that produced films with maximum amounts of active catalase. The adsorption kinetics were monitored by spectroscopic ellipsometry, and the immobilized catalase films were then assayed for catalytic activity. The development of a volumetric optical model used to interpret the ellipsometric data is discussed. According to the results herein discussed, not only the adsorbed amount but also the initial adsorption rates determine the final catalytic activity of the adsorbed layer. The results described in this paper have direct implications on the rational design and analytical performance of enzymatic biosensors.


FEBS Letters | 2009

Reductive dioxygen scavenging by flavo-diiron proteins of Clostridium acetobutylicum

Falk Hillmann; Oliver Riebe; Ralf Jörg Fischer; Augustin C. Mot; Jonathan D. Caranto; Donald M. Kurtz; Hubert Bahl

Two flavo‐diiron proteins (FDPs), FprA1 and FprA2, are up‐regulated when the strictly anaerobic solvent producer, Clostridium acetobutylicum, is exposed to dioxygen. These two FDPs were purified following heterologous overexpression in Escherichia coli as N‐terminal Strep‐tag fusion proteins. The recombinant FprA1 and FprA2 were found to be homodimeric and homotetrameric, respectively, and both FDPs functioned as terminal components of NADH oxidases (NADH:O2 oxidoreductases) when using C. acetobutylicum NADH:rubredoxin oxidoreductase (NROR) and rubredoxin (Rd) as electron transport intermediaries. Both FDPs catalyzed the four‐electron reduction of molecular oxygen to water with similar specific activities. The results are consistent with these FDPs functioning as efficient scavengers of intracellular dioxygen under aerobic or microoxic growth conditions.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Nitrosomonas europaea cytochrome P460 is a direct link between nitrification and nitrous oxide emission

Jonathan D. Caranto; Avery C. Vilbert; Kyle M. Lancaster

Significance Nitrous oxide (N2O) is a potent ozone-depleting greenhouse gas. This work identifies a means by which N2O is generated during nitrification, or biological ammonia oxidation. Fertilizer use in agriculture stimulates nitrification, thus increasing the volume of N2O emissions worldwide. The results presented herein will inform models and strategies toward optimized, sustainable agriculture. Moreover, these results highlight a rare example of biological N–N bond formation. Ammonia oxidizing bacteria (AOB) are major contributors to the emission of nitrous oxide (N2O). It has been proposed that N2O is produced by reduction of NO. Here, we report that the enzyme cytochrome (cyt) P460 from the AOB Nitrosomonas europaea converts hydroxylamine (NH2OH) quantitatively to N2O under anaerobic conditions. Previous literature reported that this enzyme oxidizes NH2OH to nitrite (NO2−) under aerobic conditions. Although we observe NO2− formation under aerobic conditions, its concentration is not stoichiometric with the NH2OH concentration. By contrast, under anaerobic conditions, the enzyme uses 4 oxidizing equivalents (eq) to convert 2 eq of NH2OH to N2O. Enzyme kinetics coupled to UV/visible absorption and electron paramagnetic resonance (EPR) spectroscopies support a mechanism in which an FeIII–NH2OH adduct of cyt P460 is oxidized to an {FeNO}6 unit. This species subsequently undergoes nucleophilic attack by a second equivalent of NH2OH, forming the N–N bond of N2O during a bimolecular, rate-determining step. We propose that NO2− results when nitric oxide (NO) dissociates from the {FeNO}6 intermediate and reacts with dioxygen. Thus, NO2− is not a direct product of cyt P460 activity. We hypothesize that the cyt P460 oxidation of NH2OH contributes to NO and N2O emissions from nitrifying microorganisms.


Journal of the American Chemical Society | 2012

Vibrational analysis of mononitrosyl complexes in hemerythrin and flavodiiron proteins: relevance to detoxifying NO reductase.

Takahiro Hayashi; Jonathan D. Caranto; Hirotoshi Matsumura; Donald M. Kurtz; Pierre Moënne-Loccoz

Flavodiiron proteins (FDPs) play important roles in the microbial nitrosative stress response in low-oxygen environments by reductively scavenging nitric oxide (NO). Recently, we showed that FMN-free diferrous FDP from Thermotoga maritima exposed to 1 equiv NO forms a stable diiron-mononitrosyl complex (deflavo-FDP(NO)) that can react further with NO to form N(2)O [Hayashi, T.; Caranto, J. D.; Wampler, D. A; Kurtz, D. M., Jr.; Moënne-Loccoz, P. Biochemistry 2010, 49, 7040-7049]. Here we report resonance Raman and low-temperature photolysis FTIR data that better define the structure of this diiron-mononitrosyl complex. We first validate this approach using the stable diiron-mononitrosyl complex of hemerythrin, Hr(NO), for which we observe a ν(NO) at 1658 cm(-1), the lowest ν(NO) ever reported for a nonheme {FeNO}(7) species. Both deflavo-FDP(NO) and the mononitrosyl adduct of the flavinated FPD (FDP(NO)) show ν(NO) at 1681 cm(-1), which is also unusually low. These results indicate that, in Hr(NO) and FDP(NO), the coordinated NO is exceptionally electron rich, more closely approaching the Fe(III)(NO(-)) resonance structure. In the case of Hr(NO), this polarization may be promoted by steric enforcement of an unusually small FeNO angle, while in FDP(NO), the Fe(III)(NO(-)) structure may be due to a semibridging electrostatic interaction with the second Fe(II) ion. In Hr(NO), accessibility and steric constraints prevent further reaction of the diiron-mononitrosyl complex with NO, whereas in FDP(NO) the increased nucleophilicity of the nitrosyl group may promote attack by a second NO to produce N(2)O. This latter scenario is supported by theoretical modeling [Blomberg, L. M.; Blomberg, M. R.; Siegbahn, P. E. J. Biol. Inorg. Chem. 2007, 12, 79-89]. Published vibrational data on bioengineered models of denitrifying heme-nonheme NO reductases [Hayashi, T.; Miner, K. D.; Yeung, N.; Lin, Y.-W.; Lu, Y.; Moënne-Loccoz, P. Biochemistry 2011, 50, 5939-5947 ] support a similar mode of activation of a heme {FeNO}(7) species by the nearby nonheme Fe(II).


Journal of the American Chemical Society | 2014

The Nitric Oxide Reductase Mechanism of a Flavo-Diiron Protein: Identification of Active-Site Intermediates and Products

Jonathan D. Caranto; Andrew J. Weitz; Michael P. Hendrich; Donald M. Kurtz

The unique active site of flavo-diiron proteins (FDPs) consists of a nonheme diiron-carboxylate site proximal to a flavin mononucleotide (FMN) cofactor. FDPs serve as the terminal components for reductive scavenging of dioxygen or nitric oxide to combat oxidative or nitrosative stress in bacteria, archaea, and some protozoan parasites. Nitric oxide is reduced to nitrous oxide by the four-electron reduced (FMNH2–FeIIFeII) active site. In order to clarify the nitric oxide reductase mechanism, we undertook a multispectroscopic presteady-state investigation, including the first Mössbauer spectroscopic characterization of diiron redox intermediates in FDPs. A new transient intermediate was detected and determined to be an antiferromagnetically coupled diferrous-dinitrosyl (S = 0, [{FeNO}7]2) species. This species has an exchange energy, J ≥ 40 cm–1 (JS1 ° S2), which is consistent with a hydroxo or oxo bridge between the two irons. The results show that the nitric oxide reductase reaction proceeds through successive formation of diferrous-mononitrosyl (S = 1/2, FeII{FeNO}7) and the S = 0 diferrous-dinitrosyl species. In the rate-determining process, the diferrous-dinitrosyl converts to diferric (FeIIIFeIII) and by inference N2O. The proximal FMNH2 then rapidly rereduces the diferric site to diferrous (FeIIFeII), which can undergo a second 2NO → N2O turnover. This pathway is consistent with previous results on the same deflavinated and flavinated FDP, which detected N2O as a product (HayashiBiochemistry2010, 49, 704020669924). Our results do not support other proposed mechanisms, which proceed either via “super-reduction” of [{FeNO}7]2 by FMNH2 or through FeII{FeNO}7 directly to a diferric-hyponitrite intermediate. The results indicate that an S = 0 [{FeNO}7}]2 complex is a proximal precursor to N–N bond formation and N–O bond cleavage to give N2O and that this conversion can occur without redox participation of the FMN cofactor.


Inorganic Chemistry | 2013

Studies of iron(III) porphyrinates containing silanethiolate ligands.

Daniel J. Meininger; Jonathan D. Caranto; Hadi D. Arman; Zachary J. Tonzetich

The chemistry of several iron(III) porphyrinates containing silanethiolate ligands is described. The complexes are prepared by protonolysis reactions of silanethiols with the iron(III) precursors, [Fe(OMe)(TPP)] and [Fe(OH)(H2O)(TMP)] (TPP = dianion of meso-tetraphenylporphine; TMP = dianion of meso-tetramesitylporphine). Each of the compounds has been fully characterized in solution and the solid state. The stability of the silanethiolate complexes versus other iron(III) porphyrinate complexes containing sulfur-based ligands allows for an examination of their reactivity with several biologically relevant small molecules including H2S, NO, and 1-methylimidazole. Electrochemically, the silanethiolate complexes display a quasi-reversible one-electron oxidation event at potentials higher than that observed for an analogous arenethiolate complex. The behavior of these complexes versus other sulfur-ligated iron(III) porphyrinates is discussed.


Journal of Biological Inorganic Chemistry | 2012

Histidine ligand variants of a flavo-diiron protein: effects on structure and activities

Han Fang; Jonathan D. Caranto; Rosalinda Mendoza; Alexander B. Taylor; P. John Hart; Donald M. Kurtz

Flavo-diiron proteins (FDPs) contain non-heme diiron and proximal flavin mononucleotide (FMN) active sites and function as terminal components of a nitric oxide reductase (NOR) and/or a four-electron dioxygen reductase (O2R). While most FDPs show similar structural, spectroscopic, and redox properties, O2R and NOR activities vary significantly among FDPs. A potential source of this variability is the iron ligation status of a conserved His residue that provides an iron ligand in all known FDP structures but one, where this His residue is rotated away from iron and replaced by a solvent ligand. In order to test the effect of this His ligation status, we changed this ligating His residue (H90) in Thermotoga maritima (Tm) FDP to either Asn or Ala. The wild-type Tm FDP shows significantly higher O2R than NOR activity. Single crystal X-ray crystallography revealed a remarkably conserved diiron site structure in the H90N and −A variants, differing mainly by either Asn or solvent coordination, respectively, in place of H90. The steady-state activities were minimally affected by the H90 substitutions, remaining significantly higher for O2R versus NOR. The pre-steady-state kinetics of the fully reduced FDP with O2 were also minimally affected by the H90 substitutions. The results indicate that the coordination status of this His ligand does not significantly modulate the O2R or NOR activities, and that FDPs can retain these activities when the individual iron centers are differentiated by His ligand substitution. This differentiation may have implications for the O2R and NOR mechanisms of FDPs.


Biochemistry | 2014

A Diferrous-Dinitrosyl Intermediate in the N2O-Generating Pathway of a Deflavinated Flavo-Diiron Protein

Jonathan D. Caranto; Andrew C. Weitz; Nitai Giri; Michael P. Hendrich; Donald M. Kurtz

Flavo-diiron proteins (FDPs) function as anaerobic nitric oxide scavengers in some microorganisms, catalyzing reduction of nitric to nitrous oxide. The FDP from Thermotoga maritima can be prepared in a deflavinated form with an intact diferric site (deflavo-FDP). Hayashi et al. [(2010) Biochemistry 49, 7040–7049] reported that reaction of NO with reduced deflavo-FDP produced substoichiometric N2O. Here we report a multispectroscopic approach to identify the iron species in the reactions of deflavo-FDP with NO. Mössbauer spectroscopy identified two distinct ferrous species after reduction of the antiferromagnetically coupled diferric site. Approximately 60% of the total ferrous iron was assigned to a diferrous species associated with the N2O-generating pathway. This pathway proceeds through successive diferrous-mononitrosyl (S = 1/2 FeII{FeNO}7) and diferrous-dinitrosyl (S = 0 [{FeNO}7]2) species that form within ∼100 ms of mixing of the reduced protein with NO. The diferrous-dinitrosyl intermediate converted to an antiferromagnetically coupled diferric species that was spectroscopically indistinguishable from that in the starting deflavinated protein. These diiron species closely resembled those reported for the flavinated FDP [Caranto et al. (2014) J. Am. Chem. Soc. 136, 7981–7992], and the time scales of their formation and decay were consistent with the steady state turnover of the flavinated protein. The remaining ∼40% of ferrous iron was inactive in N2O generation but reversibly bound NO to give an S = 3/2 {FeNO}7 species. The results demonstrate that N2O formation in FDPs can occur via conversion of S = 0 [{FeNO}7]2 to a diferric form without participation of the flavin cofactor.


Journal of Biological Inorganic Chemistry | 2015

Dioxygen and nitric oxide scavenging by Treponema denticola flavodiiron protein: a mechanistic paradigm for catalysis

Rosanne E. Frederick; Jonathan D. Caranto; Cesar A. Masitas; Linda L. Gebhardt; Charles E. MacGowan; Ronald J. Limberger; Donald M. Kurtz

Flavodiiron proteins (FDPs) contain a unique active site consisting of a non-heme diiron carboxylate site proximal to a flavin mononucleotide (FMN). FDPs serve as the terminal components for reductive scavenging of dioxygen (to water) or nitric oxide (to nitrous oxide), which combats oxidative or nitrosative stress in many bacteria. Characterizations of FDPs from spirochetes or from any oral microbes have not been previously reported. Here, we report characterization of an FDP from the anaerobic spirochete, Treponema (T.) denticola, which is associated with chronic periodontitis. The isolated T.denticola FDP exhibited efficient four-electron dioxygen reductase activity and lower but significant anaerobic nitric oxide reductase activity. A mutant T. denticola strain containing the inactivated FDP-encoding gene was significantly more air-sensitive than the wild-type strain. Single turnover reactions of the four-electron-reduced FDP (FMNH2–FeIIFeII) (FDPred) with O2 monitored on the milliseconds to seconds time scale indicated initial rapid formation of a spectral feature consistent with a cis-μ-1,2-peroxo-diferric intermediate, which triggered two-electron oxidation of FMNH2. Reaction of FDPred with NO showed apparent cooperativity between binding of the first and second NO to the diferrous site. The resulting diferrous dinitrosyl complex triggered two-electron oxidation of the FMNH2. Our cumulative results on this and other FDPs indicate that smooth two-electron FMNH2 oxidation triggered by the FDPred/substrate complex and overall four-electron oxidation of FDPred to FDPox constitutes a mechanistic paradigm for both dioxygen and nitric oxide reductase activities of FDPs. Four-electron reductive O2 scavenging by FDPs could contribute to oxidative stress protection in many other oral bacteria.

Collaboration


Dive into the Jonathan D. Caranto's collaboration.

Top Co-Authors

Avatar

Donald M. Kurtz

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew C. Weitz

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cesar A. Masitas

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Charles E. MacGowan

New York State Department of Health

View shared research outputs
Top Co-Authors

Avatar

Linda L. Gebhardt

New York State Department of Health

View shared research outputs
Top Co-Authors

Avatar

Nitai Giri

University of Massachusetts Amherst

View shared research outputs
Researchain Logo
Decentralizing Knowledge